Publications by authors named "Yudong Gao"

Background: On March 16th 2024, the first case of Human infection with avian influenza H10N3 since the end of the global COVID-19 Pandemic was reported in Kunming, China. To enhance comprehension of the source of infection and risk factors of the H10N3 virus infection, this case report summarizes the clinical features, epidemiological investigation, and laboratory test results. Provides recommendations for the prevention and control of Human infection with avian influenza H10N3.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the genetic factors behind autism spectrum disorder by focusing on specific risk genes and their interactions within protein complexes in the mouse brain.
  • Researchers developed a method to examine the spatial proteomes of these genes, identifying interactions that connect high-risk genes with less-known ones, which may help in prioritizing genetic risks.
  • By using spatial proteomics and CRISPR technology, the study demonstrates functional interactions that regulate gene expression, shedding light on cellular mechanisms involved in autism and offering new pathways for research and potential treatments.
View Article and Find Full Text PDF

This study aimed to investigate the selected anatomical factors that can potentially influence temporomandibular joint (TMJ) clicking in young adults by assessing TMJ structures and lateral pterygoid muscle (LPM) function using magnetic resonance imaging (MRI). The patients were divided into four groups: the healthy control group; the clicking on mouth opening group; the clicking on mouth closing group; and the clicking on mouth opening and closing group. Additionally, we used clinical palpation to evaluate the masticatory muscles' functional state and employed MRI using the OCOR-T1WI-FSE-CLOSED, OSAG-PDW-FSE-CLOSED, and OSAG-PDW-FSE-OPEN sequences to analyze the texture of the lateral pterygoid muscle (LPM).

View Article and Find Full Text PDF

The present study aims to compare the volume surface area of the condyle, the horizontal condylar axial angle and the disc-condyle angle between temporomandibular disorder (TMD) and asymptomatic volunteers, explore and analyze the relationship between the temporomandibular joint (TMJ) disc position in oblique sagittal plane and the volume surface area of the condyle in young adults with TMD symptoms. 84 young adult volunteers were received TMJ examination by Magnetic Resonance Imaging (MRI) and Cone Beam Computed Tomography (CBCT). TMD and asymptomatic volunteers were 42 each.

View Article and Find Full Text PDF

Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain.

View Article and Find Full Text PDF

Introduction: The present study aims to assess and compare the clinical outcomes of immediate implant placement in the mandibular molar region with or without the presence of chronic periapical periodontitis.

Materials And Methods: Employing a case-control design, this study encompassed a cohort of patients necessitating implant surgery to supplant a single, failed mandibular molar. Participants exhibiting periapical lesions measuring between > 4 mm and < 8 mm were assigned to the test group, while those without periapical lesions to the control group.

View Article and Find Full Text PDF

Background: The ability to correctly associate cues and contexts with threat is critical for survival, and the inability to do so can result in threat-related disorders such as posttraumatic stress disorder. The prefrontal cortex (PFC) and hippocampus are well known to play critical roles in cued and contextual threat memory processing. However, the circuits that mediate prefrontal-hippocampal modulation of context discrimination during cued threat processing are less understood.

View Article and Find Full Text PDF

Epilepsy Aphasia Syndromes (EAS) are a spectrum of childhood epileptic, cognitive, and language disorders of unknown etiology. is a strong X-linked candidate gene implicated in EAS; however, there have been no studies of genetic models to dissect how its absence may lead to EAS. Here we develop a novel KO mouse line and show that male mice exhibit increased neural activity and have spontaneous electrographic seizures.

View Article and Find Full Text PDF

In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments.

View Article and Find Full Text PDF

Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior.

View Article and Find Full Text PDF

A simple voltammetric sensor was first constructed by dripping graphene (GR) on to the glass carbon electrode (GCE) and subsequently electro-polymerizing L-cysteine film. The sensor had a good voltammetric response to amaranth and linear in the range of 1.0 × 10-1.

View Article and Find Full Text PDF

Analysis of endogenous protein localization, function, and dynamics is fundamental to the study of all cells, including the diversity of cell types in the brain. However, current approaches are often low throughput and resource intensive. Here, we describe a CRISPR-Cas9-based homology-independent universal genome engineering (HiUGE) method for endogenous protein manipulation that is straightforward, scalable, and highly flexible in terms of genomic target and application.

View Article and Find Full Text PDF

Flame retardants have evoked public concerns owing to their extensive usage in consumer products and potential adverse effects on human health. In this study, a rapid and sensitive solid-phase extraction-ultra-high-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method was developed to determine hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA), six bromophenols (BPs), and nine organophosphate flame retardants (OPFRs) in water. Because of the differences in elution conditions and ionization modes for group 1 (HBCD, TBBPA, and the BPs) and group 2 (OPFRs), we had to run them twice under the different conditions to analyse group 1 and group 2 using UPLC-MS/MS.

View Article and Find Full Text PDF

In this work, poly(sodium p-styrenesulfonate) (PSS)-functionalized graphene supported palladium nanoparticles (Pd) composites were fabricated with simple ultrasonic bath method. The morphology and structure of PSS-GR-Pd composites were characterized using UV-vis absorption spectra, X-ray diffraction and Transmission Electron Microscopy. By combining the merits of the PSS-GR and Pd NPs, a new electrochemical sensor was erected to detect amaranth based on the PSS-GR-Pd nanocomposites.

View Article and Find Full Text PDF

A simple and sensitive voltammetric sensor for Orange II was developed, based on a poly(sodium p-styrenesulfonate)-functionalized graphene-modified glassy carbon electrode. This voltammetric sensor showed strong accumulation ability and an excellent voltammetric response for Orange II. The electrochemical behavior of Orange II was systematically investigated in a pH 7.

View Article and Find Full Text PDF

Although it is generally recognized that certain α-subunits of γ-aminobutyric acid type A receptors (GABAARs) form enriched clusters on the axonal initial segment (AIS), the degree to which these clusters vary in different brain areas is not well known. In the current study, we quantified the density, size, and enrichment ratio of fluorescently labeled α1-, α2-, or α3-subunits aggregates co-localized with the AIS-marker ankyrin G and compared them to aggregates in non-AIS locations among different brain areas including hippocampal subfields, basal lateral amygdala (BLA), prefrontal cortex (PFC), and sensory cortex (CTX). We found regional differences in the enrichment of GABAAR α-subunits on the AIS.

View Article and Find Full Text PDF

Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses.

View Article and Find Full Text PDF

A simple and sensitive electrochemical method for the determination of the insecticide pymetrozine was proposed using a simple electrochemically pretreated glassy carbon electrode (EPGCE). Compared with the bare GCE, the electrochemical response signal of pymetrozine at the EPGCE showed a significant increase. The electrochemical behavior of pymetrozine was investigated systematically and some dynamics were investigated in detail for the first time.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important molecule for the proper development and function of the central nervous system. In this study, we investigated the behavioral alterations in the neuronal NO synthase knockout mice (NOS1 KO) with a deficient NO production mechanism in the brain, characterizing it as a potential rodent model for attention deficit hyperactivity disorder (ADHD). NOS1 KO exhibited higher locomotor activity than their wildtype counterparts in a novel environment, as measured by open field (OF) test.

View Article and Find Full Text PDF