Publications by authors named "Yudhistira I"

Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range.

View Article and Find Full Text PDF

Understanding the normal-metal state transport in twisted bilayer graphene near magic angle is of fundamental importance as it provides insights into the mechanisms responsible for the observed strongly correlated insulating and superconducting phases. Here we provide a rigorous theory for phonon-dominated transport in twisted bilayer graphene describing its unusual signatures in the resistivity (including the variation with electron density, temperature, and twist angle) showing good quantitative agreement with recent experiments. We contrast this with the alternative Planckian dissipation mechanism that we show is incompatible with available experimental data.

View Article and Find Full Text PDF
Article Synopsis
  • There is a strong demand for high-performance magnetoresistance (MR) sensors that operate at room temperature and with low energy consumption.
  • The study presents a monolayer graphene-on-black phosphorus (G/BP) heterostructure device, which achieves a remarkable MR of 775% at 9 T and 300 K, outperforming previous designs using monolayer graphene or few-layer BP.
  • The findings suggest that coupling between 2D materials and substrates can enhance MR effects, highlighting the potential for creating advanced sensors utilizing these properties.
View Article and Find Full Text PDF

Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and should show reduced fluctuations due to better metallic screening and higher dielectric constants.

View Article and Find Full Text PDF

Coupling spins of molecular magnets to two-dimensional (2D) materials provides a framework to manipulate the magneto-conductance of 2D materials. However, with most molecules, the spin coupling is usually weak and devices fabricated from these require operation at low temperatures, which prevents practical applications. Here, we demonstrate field-effect transistors based on the coupling of a magnetic molecule quinoidal dithienyl perylenequinodimethane (QDTP) to 2D materials.

View Article and Find Full Text PDF

The charge carrier density in graphene on a dielectric substrate such as SiO_{2} displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge neutrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy and spectroscopy on a mesoscopic graphene device, we directly observe the puddles' growth, both in spatial extent and in amplitude, as the Fermi level approaches the Dirac point.

View Article and Find Full Text PDF

Monolayers of group 6 transition metal dichalcogenides are promising candidates for future spin-, valley-, and charge-based applications. Quantum transport in these materials reflects a complex interplay between real spin and pseudospin (valley) relaxation processes, which leads to either positive or negative quantum correction to the classical conductivity. Here we report experimental observation of a crossover from weak localization to weak antilocalization in highly n-doped monolayer MoS_{2}.

View Article and Find Full Text PDF

We predict and demonstrate that a disorder-induced carrier density inhomogeneity causes magnetoresistance (MR) in a two-dimensional electron system. Our experiments on graphene show a quadratic MR persisting far from the charge neutrality point. Effective medium calculations show that for charged impurity disorder, the low-field MR is a universal function of the ratio of carrier density to fluctuations in carrier density, a power law when this ratio is large, in excellent agreement with experiment.

View Article and Find Full Text PDF