Background: To link the treatment of radiation injury with angiogenesis, and to design and seek a new therapeutic technique for the prevention and treatment of radiation injury.
Methods: The transverse bone transport device for rabbit mandible was designed and manufactured. Eighteen New Zealand white rabbits were randomly divided into a radiotherapy group and a normal group.
Objectives: Single-strand DNA-binding protein 1 (SSB1) plays a crucial role in the cellular response to DNA damage. This study aimed to explore the expression and regulation of SSB1 in normal rat salivary gland tissues and tissues following radiation, with a specific emphasis on its involvement in the repair of salivary gland injury.
Methods: A total of 45 adult SD rats were randomly assigned to one control group or eight experimental groups.
Purpose: To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin.
Methods: SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray.
Objective: Radiotherapy for head and neck can damage the salivary gland cells, which can easily result in xerostomia. No effective treatment for radiation-induced salivary gland dysfunction currently exists. Thus, we aimed to study the protective effect of polysaccharides (DCP) on the prevention of submandibular gland (SMG) cell damage caused by radiotherapy in Sprague-Dawley rats.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2024
The salivary gland (SGS) is a kind of organ vulnerable to ionizing radiation. Radiotherapy is an important treatment for head and neck tumors, but in the process of radiotherapy, tumor cells will be injured by radiation to a certain extent. Infrared-induced DNA double-strand break (IR-DSBs) is one of the most serious DNA damage.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Independent component analysis (ICA) has been wildly used to improve EEG based application such as brain computer interface (BCI). However, some well know ICA algorithm, such as Infomax ICA, suffering from the problem of convergence latency and make it hard to be apply on real-time application. This paper proposes a highly efficient chip implementation of multi-channel EEG real-time system based on online recursive independent component analysis algorithm (ORICA).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Independent component analysis (ICA) has been wildly used to improve EEG based application such as brain computer interface (BCI). However, some well know ICA algorithm, such as Infomax ICA, suffering from the problem of convergence latency and make it hard to be apply on real-time application. This paper proposes a highly efficient chip implementation of multi-channel EEG real-time system based on online recursive independent component analysis algorithm (ORICA).
View Article and Find Full Text PDFOrganic low molecular weight gelators with a tetrathiafulvalene (TTF) unit have received considerable attention because the formed gels usually exhibit redox active response and conducting or semiconducting properties. However, to our knowledge, metal coordination systems have not been reported for TTF-derived gels up to date. We have designed and synthesized a series of TTF derivatives with a diamide-diamino moiety that can coordinate to specific metal ions with square coordination geometry.
View Article and Find Full Text PDFAlthough charge-transfer compounds based on tetrathiafulvalene (TTF) derivatives have been intensively studied, {[cation](n+)·[TTFs](n-)} ion pair charge-transfer (IPCT) salts have not been reported. The aim of this research is to introduce functional organic cations, such as photoactive methyl viologen (MV(2+)), into the negatively charged TTF-metal coordination framework to obtain this new type of IPCT complex. X-ray structural analysis of the four compounds (MV)2[Li4(L)2(H2O)6] (1), {(MV)(L)[Na2(H2O)8]·4H2O}n (2), {(MV)[Mn(L)(H2O)2]·2H2O}n (3), and {(MV)[Mn(L)(H2O)2]}n (4), reveals that the electron donor (D) TTF moiety and the electron acceptor (A) MV(2+) form a regular mixed-stack arrangement in alternating DADA fashion.
View Article and Find Full Text PDFSmall organic molecule-based compounds are considered to be promising materials in photoelectronics and high-performance optoelectronic devices. However, photoelectron conversion research based on functional organic molecule and metal complex dyads is very scarce. We design and prepare a series of compounds containing a tetrathiafulvalene (TTF) moiety substituted with pyridylmethylamide groups of formulas [Ni(acac)2L]·2CH3OH (1), [Cu2I2L2]·THF·2CH3CN (2), and [MnCl2L2]n·2nCH3CH2OH (3) (L = 4,5-bis(3-pyridylmethylamide)-4',5'-bimethylthio-tetrathiafulvalene, acac = acetylacetone) to study the role of the coordination center in photocurrent behavior.
View Article and Find Full Text PDFWater shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented.
View Article and Find Full Text PDF