Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies.
View Article and Find Full Text PDFA major obstacle to the therapeutic application of an aptamer is its susceptibility to nuclease digestion. Here, we confirmed the acquisition of relative nuclease resistance of a DNA-type thrombin binding aptamer with a warhead (TBA) by covalent binding to a target protein in the presence of serum/various nucleases. When the thrombin-inhibitory activity of TBA on thrombin was reversed by the addition of the complementary strand, the aptamer was instantly degraded by the nucleases, showing that the properly folded/bound aptamer conferred the resistance.
View Article and Find Full Text PDFWe have previously established a selection system to obtain a solvatochromic protein binder from a peptidic fluoroprobe library via the extended T7 phage display. Here, we use the peptidic binder as a fluororeporter in this proof-of-concept study of fragment-based screening approach to drug discovery. The binder is released from the target protein on mixing with an appropriate lead compound, thereby altering its fluorescence color/intensity under 365 nm ultraviolet wavelength irradiation.
View Article and Find Full Text PDFA peptide-type covalent binder for a target protein was obtained by direct and stringent screening of a warhead-modified peptide library on the robust T7 phage. The aryl fluorosulfate (fosylate) warhead was activated only in a matchmaking microenvironment created between the target protein and an appropriate peptide during the reactivity/affinity-based co-selection process of extended phage display.
View Article and Find Full Text PDFAlleviating the potential risk of irreversible adverse drug effects has been an important and challenging issue for the development of covalent drugs. Here we created a DNA-aptamer-type covalent drug by introducing a sulfonyl fluoride warhead at appropriate positions of the thrombin binding aptamer to create weaponized covalent drugs. We showed the de-activation of thrombin by the novel modality, followed by its re-activation by the complementary strand antidote at an arbitrary time.
View Article and Find Full Text PDFAnal Bioanal Chem
October 2018
We established a novel principle for fluorescence detection of a target protein. A low-molecular-weight fluorescent pharmacophore, as a targeted probe, was selected from a dynamic combinatorial library of Schiff bases. The pharmacophore retains its fluorescence when bound to the hydrophobic site of the target, whereas it loses it because of hydrolysis when unbound.
View Article and Find Full Text PDFA peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride.
View Article and Find Full Text PDF