Environmental stresses such as salt and drought severely affect plant growth and development. SQUAMOSA-promoter binding protein-like (SPL) transcription factors (TFs) play critical roles in the regulation of diverse processes; however, reports describing the SPL regulation of plant responses to abiotic stress are relatively few. In this study, two stress-responsive TFs from Codonopsis pilosula (CpSPL5 and CpSPL8) are reported, which confer salt stress sensitivity.
View Article and Find Full Text PDFTo uncover the effective interventions during the pandemic period, a novel mathematical model, which incorporates separate compartments for incubation and asymptomatic individuals, has been developed in this paper. On the basis of a general mixing, final size relation and next-generation matrix are derived for a meta-population model by introducing the matrix blocking. The final size ([Formula: see text]) and the basic reproduction number ([Formula: see text]) are no longer a simple monotonous relationship.
View Article and Find Full Text PDFD-arabitol, a five-carbon sugar alcohol, is widely used in food and pharmacy industry as a lower calorie sweetener or intermediate. Appropriate osmotic pressure was confirmed to facilitate polyol production by an osmophilic yeast strain of Yarrowia lipolytica with glycerol. In this study, an osmotic pressure control fed-batch fermentation strategy was used for high D-arabitol producing by Y.
View Article and Find Full Text PDFObesity is a serious health issue as it is a social burden and the main risk factor for other metabolic diseases. Increasing evidence indicates that a high-fat diet (HFD) is the key factor for the development of obesity, but the key genes and their associated molecular mechanisms are still not fully understood. In this study, we performed integrated bioinformatic analysis and identified that fructose-1,6 biphosphatase 2 (FBP2) was involved in free fatty acids (FFAs)-induced lipid droplet accumulation in hepatocytes and HFD-induced obesity in mice.
View Article and Find Full Text PDFBackground: Trilobatin, a natural compound, has been found to exhibit anti-diabetic properties in high-fat diet (HFD) and streptozotocin (STZ) induced type 2 diabetic mice. But up to now no research has been reported on the effect of trilobatin on insulin resistance in peripheral tissues. Herein, we determined the effects of trilobatin on insulin resistance in palmitate-treated C2C12 myotubes and ob/ob mice.
View Article and Find Full Text PDFBasic helix-loop-helix (bHLH) transcription factors play essential roles in myriad regulatory processes, including secondary metabolism. In this study with Salvia miltiorrhiza, we isolated and characterized SmbHLH53, which encodes a bHLH family member. Expression of this gene was significantly induced by wounding and multiple hormones, including methyl jasmonic acid; transcript levels were highest in the leaves and roots.
View Article and Find Full Text PDFStudies have indicated that Na-d-glucose co-transporter (SGLT) inhibitors had anti-proliferative activity by attenuating the uptake of glucose in several tumor cell lines. In this study, the molecular docking showed that, trilobatin, one of the dihydrochalcones from leaves of Rehd., might be a novel inhibitor of SGLT1 and SGLT2, which evidently attenuated the uptake of glucose in vitro and in vivo.
View Article and Find Full Text PDFPhenolic acids from have drawn considerable attention in recent years because of their remarkable pharmacological activities. We previously reported that transcription factor production of anthocyanin pigment 1 (AtPAP1) has strong capability to promote the production of phenolic acids in . However, the responsible molecular mechanism is unclear.
View Article and Find Full Text PDFTranscription factors that include myeloblastosis (MYB), basic helix-loop-helix (bHLH), and tryptophan-aspartic acid (WD)-repeat protein often form a ternary complex to regulate the phenylpropanoid pathway. However, only a few MYB and bHLH members involved in the biosynthesis of salvianolic acid B (Sal B) have been reported, and little is known about Sal B pathway regulation by the WD40 protein transparent testa glabra 1 (TTG1)-dependent transcriptional complexes in Salvia miltiorrhiza. We isolated SmTTG1 from that species for detailed functional characterization.
View Article and Find Full Text PDFAbiotic stresses, such as drought and high salinity, are major factors that limit plant growth and productivity. Late embryogenesis abundant (LEA) proteins are members of a diverse, multigene family closely associated with tolerance to abiotic stresses in numerous organisms. We examined the function of SmLEA2, previously isolated from Salvia miltiorrhiza, in defense responses to drought and high salinity.
View Article and Find Full Text PDFJasmonates (JAs) are plant-specific key signaling molecules that respond to various stimuli and are involved in the synthesis of secondary metabolites. However, little is known about the JA signal pathway, especially in economically significant medicinal plants. To determine the functions of novel genes that participate in the JA-mediated accumulation of secondary metabolites, we examined the metabolomic and transcriptomic signatures from Salvia miltiorrhiza.
View Article and Find Full Text PDFSalinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge.
View Article and Find Full Text PDFTo produce beneficial phenolic acids for medical and commercial purposes, researchers are interested in improving the normally low levels of salvianolic acid B (Sal B) produced by Salvia miltiorrhiza. Here, we present a strategy of combinational genetic manipulation to enrich the precursors available for Sal B biosynthesis. This approach, involving the lignin pathway, requires simultaneous, ectopic expression of an Arabidopsis Production of Anthocyanin Pigment 1 transcription factor (AtPAP1) plus co-suppression of two endogenous, key enzyme genes: cinnamoyl-CoA reductase (SmCCR) and caffeic acid O-methyltransferase (SmCOMT).
View Article and Find Full Text PDF