To improve the efficiency of CO geological sequestration, it is of great significance to in-depth study the physical mechanism of the immiscible CO-water displacement process, where the influential factors can be divided into fluid-fluid and fluid-solid interactions and porous media characteristics. Based on the previous studies of the interfacial tension (capillary number) and viscosity ratio factors, we conduct a thorough study about the effects of fluid-solid interaction (i.e.
View Article and Find Full Text PDFWe report the construction of a molecular vise by pairing a tritopic phenylphosphorus(III) linker and a monotopic linker in opposite positions within a metal-organic framework. The angle between these linkers at metal sites is fixed upon changing the functionality in the monotopic linker, while the distance between them is precisely tuned. This distance within the molecular vise is accurately measured by H-P solid-state nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFEffective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.
View Article and Find Full Text PDF