Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice.
View Article and Find Full Text PDFSoft matters, particularly giant molecular self-assembly, have successfully replicated complex structures previously exclusive to metal alloys. These superlattices are constructed from mesoatoms─supramolecular spherical motifs of aggregated molecules, and the formation of superlattices critically depends on the volume distributions of these mesoatoms. Herein, we introduce two general methods to control volume asymmetry (i.
View Article and Find Full Text PDFMany behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities.
View Article and Find Full Text PDFThe search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology.
View Article and Find Full Text PDFSoft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons.
View Article and Find Full Text PDFIntegrating inorganic and polymerized organic functionalities to create composite materials presents an efficient strategy for the discovery and fabrication of multifunctional materials. The characteristics of these composites go beyond a simple sum of individual component properties; they are profoundly influenced by the spatial arrangement of these components and the resulting homo-/hetero-interactions. In this work, we develop a facile and highly adaptable approach for crafting nanostructured polymer-inorganic composites, leveraging hierarchically assembling mixed-graft block copolymers (mGBCPs) as templates.
View Article and Find Full Text PDFIn expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists.
View Article and Find Full Text PDFThe aggregation of TAR DNA binding protein 43 kDa (TDP-43) is related to different neurodegenerative diseases, which leads to microglial activation and neuronal loss. The molecular mechanism driving neuronal death by reactive microglia, however, has not been completely resolved. In this study, we generated a mouse model by overexpressing mutant human TDP-43 (M337V) in the primary motor cortex, leading to prominent motor-learning deficits.
View Article and Find Full Text PDFSalt homeostasis is orchestrated by both neural circuits and peripheral endocrine factors. The colon is one of the primary sites for electrolyte absorption, while its potential role in modulating sodium intake remains unclear. Here, we revealed that a gastrointestinal hormone, secretin, is released from colon endocrine cells under body sodium deficiency and is indispensable for inducing salt appetite.
View Article and Find Full Text PDFIn mammals, thirst is strongly influenced by the subfornical organ (SFO), a forebrain structure that integrates circulating signals including osmotic pressure and sodium contents. Secretin (SCT), a classical gastrointestinal hormone, has been implicated as a humoral factor regulating body-fluid homeostasis. However, the neural mechanism of secretin in the central nervous system in managing thirst remains unclear.
View Article and Find Full Text PDFInactivation of Celsr3 in the forebrain results in defects of longitudinal axonal tracts such as the corticospinal tract. In this study, we inactivated Celsr3 in the brainstem using En1-Cre mice (Celsr3 cKO) and analyzed axonal and behavioral phenotypes. Celsr3 cKO animals showed an 83% reduction of rubrospinal axons and 30% decrease of corticospinal axons in spinal segments, associated with increased branching of dopaminergic fibers in the ventral horn.
View Article and Find Full Text PDFThe hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically.
View Article and Find Full Text PDFThe Cretaceous witnessed a radiation of rove beetles (Staphylinidae), the most species-rich beetle family. Although most staphylinid subfamilies have been documented from Cretaceous strata over the world, there has been no fossil record of the subfamily Pseudopsinae until a recently reported fossil from the 99-Ma-old Myanmar amber. Here we describe a new compression fossil from the Lower Cretaceous Yixian Formation of northeastern China.
View Article and Find Full Text PDFThe packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging.
View Article and Find Full Text PDFThe quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy.
View Article and Find Full Text PDFCorrelating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence.
View Article and Find Full Text PDFWe report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.
View Article and Find Full Text PDFAchieving self-assembled nanostructures with ultra-small feature sizes (e. g., below 5 nm) is an important prerequisite for the development of block copolymer lithography.
View Article and Find Full Text PDFPseudopsinae represented by four genera with just over 50 species in the Recent fauna represent one of the smallest subfamilies of the megadiverse family Staphylinidae. Here we describe the first fossil member of the subfamily Pseudopsinae. Cretopseudopsis maweii gen.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2021
Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2021
Despite the significant advances in creating assembled structures from polymers, engineering the assembly of polymeric materials into framework structures remains an outstanding challenge. In this work, we present a facile strategy to construct polymeric molecular frameworks through the assembly of T-shape polymer-rod-sphere amphiphiles in the bulk state. Various frameworks are yielded as a result of delicate interplays among three components of the T-shape amphiphiles.
View Article and Find Full Text PDFAnisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (.
View Article and Find Full Text PDFLike other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported.
View Article and Find Full Text PDFHow biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course.
View Article and Find Full Text PDFIn biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation.
View Article and Find Full Text PDF