Publications by authors named "Yuchi Zhong"

Algal cell proliferation has posed significant problems for traditional water treatment facilities; these problems are attributed to surface hydrophilicity and electrostatic repulsion. Biological aerated filters (BAFs) have been extensively used in wastewater treatment to remove pollutants such as algal cells by utilizing the adsorption and separation capabilities of the filter media. In this study, a BAF was supplemented with biological filter medium () to assess its effectiveness of pretreating aquaculture wastewater.

View Article and Find Full Text PDF

The treatment and surfactant recovery of soil washing/flushing effluent containing high levels of surfactants and organic pollutants are critical for the surfactant-assisted remediation of soils and waste management due to their complexity and high-potential risks. Combination of waste activated sludge material (WASM) and a kinetic-based two-stage system design was introduced in this study as a novel strategy for the separation of phenanthrene and pyrene from Tween 80 solutions. The results showed that WASM can effectively sorb phenanthrene and pyrene with high affinities (K) of 2325.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are widely detected in the environment and wild animals, thus posing a threat to wildlife and public health; however, knowledge about their immunotoxicity and the underlying mechanism remains limited. In the present study, male black-spotted frogs (Rana nigromaculata) were exposed to environmentally relevant concentrations (0, 1, and 10 μg/L) of PFOA or PFOS for 21 days; subsequently, biochemical analysis, molecular docking, and gene expression determination were conducted. The results indicated that exposure to 10 μg/L PFOA decreased the serum levels of immunoglobulin A.

View Article and Find Full Text PDF

Environmental-friendly and efficient strategies for triclosan (TCS) removal have received more attention. Influenced by COVID-19, a large amount of TCS contaminants were accumulated in medical and domestic wastewater discharges. In this study, a unique g-CN/BiMoO heterostructure was fabricated and optimized by a novel and simple method for superb photocatalytic dechlorination of TCS into 2-phenoxyphenol (2-PP) under visible light irradiation.

View Article and Find Full Text PDF

Efficient treatment of cyanobacterial blooms in eutrophication waters by safe and reliable nanomaterials is a big challenge for reducing environmental health risks. Herein, a novel strategy combining palladium clusters (Pd) with g-CN nanocomposite was presented to achieve high-efficient removal of Microcystis aeruginosa cells through coagulation and breakage. Interestingly, 95.

View Article and Find Full Text PDF

Knowledge about the impact of singlet oxygen (O) on the characteristics and inactivation of harmful cyanobacterial organic matter is limited. In this study, the feasibility of using an improved single-iron doped graphite-like phase carbon nitride catalyst (FeCN) to activate peroxymonosulfate (PMS) catalytic production of O to inactivate four harmful cyanobacteria was investigated. The inactivation efficiencies at 30 min were 92.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental pollutants, causing environmental threats and public health concerns, but information regarding PFAS hepatotoxicity remains elusive. We investigated the effects of PFASs on lipid metabolism in black-spotted frogs through a combined field and laboratory study. In a fluorochemical industrial area, PFASs seriously accumulate in frog tissues.

View Article and Find Full Text PDF

Pollution caused by per- and polyfluoroalkyl substances (PFASs) has become a major global concern. The association between PFAS-induced hepatotoxicity and gut microbiota in amphibians, particularly at environmentally relevant concentrations, remains elusive. Herein we exposed male black-spotted frogs (Rana nigromaculata) to 1 and 10 μg/L waterborne perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) for 21 days; subsequently, liver histopathological, oxidative stress, molecular docking, gene/protein expression, and gut microbiome analyses were conducted.

View Article and Find Full Text PDF

Biochar modification by metal/metal oxide is promising for improving its adsorption capability for contaminants, especially the anions. However, conventional chemical modifications are complicated and costly. In this study, novel Fe/Fe oxide loaded biochars (RMBCs) were synthesized from a one-step co-pyrolysis of red mud (RM) and shaddock peel (SP), and their potential application for removing anionic azo dye (acid orange 7, AO7) from the aqueous environment was evaluated.

View Article and Find Full Text PDF

Polychlorinated dibenzo-p-dioxins (PCDDs), characterized by their extreme toxicity, high persistency and bioaccumulation, regard as one of the most concerned environmental pollutants on the priority list. In this study, microwave-hydrothermal and photoreduction methods were adopted for fabrication of ternary Au@Fe/TiO composites for removal of 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) under UV-Vis light irradiation. The acquired materials were characterized and analyzed by XRD, TEM, XPS, UV-Vis DRS, PL, etc.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) is widely used in industrial production due to its stable chemical structure and hydrophobic and oleophobic characteristics. PFOA has been frequently detected in environmental media and organisms, leading to increased health risks. There is a lack of information about the immunotoxicity of aquatic organisms induced by PFOA, and the molecular mechanisms remain unclear.

View Article and Find Full Text PDF

The massive use of silver nanoparticles (AgNPs) is potentially harmful to exposed humans. Although previous studies have found that AgNPs can induce cell autophagy, few studies have focused on the toxic pathways and mechanisms of autophagy induced by AgNPs in rat respiratory epithelial (RTE) cells. In this study, RTE cells were exposed to two kinds of AgNPs in vitro to ascertain the influence of mTOR-autophagy pathway-associated protein expression, including Beclin1, LC3B, Atg5, and Atg7.

View Article and Find Full Text PDF

Metal oxide nanoparticles and carbon nanoparticles, as common nanoparticles (NPs), can cause autophagy in certain cells, which will lead to biohealth risk issues. This study determined the difference in autophagy induced by zinc oxide nanoparticles (ZnO NPs) and single-walled carbon nanotubes (SWCNTs) in respiratory epithelial cells. ICP-OES results showed that NPs uptake as well as the intercellular contents of particles affected cytotoxicity in a dose-dependent manner.

View Article and Find Full Text PDF

Biochar is an effective amendment for trace metal/metalloid (TMs) immobilization in soils. The capacity of biochar to immobilize TMs in soil can be positively or negatively altered due to the changes in the surface and structural chemistry of biochar after soil application. Biochar surfaces are oxidized in soils and induce structural changes through physical and biochemical weathering processes.

View Article and Find Full Text PDF

Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) has been identified as a new persistent organic pollutant. This pollutant is ubiquitous in water and environments. Although PFOA is toxic to fishes, the precise immunotoxicological mechanism remains unclear.

View Article and Find Full Text PDF

Given the steel industry park-city paired structure commonly found across China and it associated environmental pollution, the objective of this study was to examine the spatial-temporal distributions of polycyclic aromatic hydrocarbons (PAHs) as well as the relative contributions of the main influx pathways in Banshan steel industry park, China. We analyzed the concentrations of 16 PAHs in soil, air, water and dry/wet deposition samples using gas chromatography-mass spectrometry (GC-MS). The concentrations of ∑(16)-PAHs ranged from 572 to 4,654 μg/kg in April 2010; and the average concentration is 12.

View Article and Find Full Text PDF