Publications by authors named "Yuchen Shang"

As an advanced amorphous material, sp amorphous carbon exhibits exceptional mechanical, thermal and optical properties, but it cannot be synthesized by using traditional processes such as fast cooling liquid carbon and an efficient strategy to tune its structure and properties is thus lacking. Here we show that the structures and physical properties of sp amorphous carbon can be modified by changing the concentration of carbon pentagons and hexagons in the fullerene precursor from the topological transition point of view. A highly transparent, nearly pure sp-hybridized bulk amorphous carbon, which inherits more hexagonal-diamond structural feature, was synthesized from C at high pressure and high temperature.

View Article and Find Full Text PDF

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals.

View Article and Find Full Text PDF

Powdered activated carbon (PAC) adsorption is regarded as an efficient method for removing odorants from drinking water. However, in eutrophic aquatic environments, the presence of algal organic matter (AOM) produced by cyanobacteria considerably impedes the adsorption of odorous compounds by activated carbon. This study focused on investigating the adsorption characteristics of three representative odorants: 2-methylisoborneol (2-MIB), β-cyclocitral (β-cyclo), and butyl sulfide (BS) by PAC and the effects of AOM on the PAC adsorption of odorants.

View Article and Find Full Text PDF
Article Synopsis
  • - Amorphous materials retain some properties of their crystalline counterparts but also exhibit unique features, making them interesting for technological applications.
  • - Researchers successfully synthesized large samples of nearly pure sp amorphous carbon, which has diamond-like characteristics, by heating fullerenes under high pressure.
  • - This new amorphous carbon shows exceptional hardness, elastic modulus, and thermal conductivity, along with tunable optical properties, paving the way for advanced uses of amorphous materials.
View Article and Find Full Text PDF

Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier.

View Article and Find Full Text PDF