Bilirubin exists as albumin-bound complexes in the bloodstream of patients with hyperbilirubinemia. Developing adsorbents with high removal efficiency for albumin-bound bilirubin and excellent hemocompatibility is essential for effective hemoperfusion therapy. Herein, microfibrillated cellulose-reinforced polyethyleneimine cryogels (PEI/MFC) with robust mechanical properties were fabricated through cryo-induced chemical crosslinking, using bis(vinylsulphonyl)methane (BVSM) as chemical cross-linker.
View Article and Find Full Text PDFIntroduction: Temporomandibular disorders (TMD) have a high prevalence and complex etiology. The purpose of this study was to apply a machine learning (ML) approach to identify risk factors for the occurrence of TMD in adults and to develop and validate an interpretable predictive model for the risk of TMD in adults.
Methods: A total of 949 adults who underwent oral examinations were enrolled in our study.
In the landscape of infectious diseases, human coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 pose significant threats, characterized by severe respiratory illnesses and notable resistance to conventional treatments due to their rapid evolution and the emergence of diverse variants, particularly within SARS-CoV-2. This study investigated the development of broad-spectrum coronavirus vaccines using heterodimeric RBD-Fc proteins engineered through the "Knob-into-Hole" technique. We constructed various recombinant proteins incorporating the receptor-binding domains (RBDs) of different coronaviruses.
View Article and Find Full Text PDFObjectives: Temporomandibular disorders (TMDs) have a relatively high prevalence among university students. This study aimed to identify independent risk factors for TMD in university students and develop an effective risk prediction model.
Methods: This study included 1,122 university students from four universities in Changchun City, Jilin Province, as subjects.
Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Sodium-ion batteries (SIBs), owing to their abundant resources and cost-effectiveness, have garnered considerable interest in the realm of large-scale energy storage. The properties of cathode materials profoundly affect the cycle stability and specific capacity of batteries. Herein, a series of Cu-doped spherical P2-type NaFeCuMnO ( = 0, 0.
View Article and Find Full Text PDFThe rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.
View Article and Find Full Text PDFArthritis causes Fos-like 2 (Fosl2) inactivation, and various immune cells contribute to its pathogenesis. However, little is known about the role of Fosl2 in hematopoiesis and the possible pathological role of Fosl2 inactivation in the hematopoietic system in arthritis. In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages.
View Article and Find Full Text PDFThe current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences.
View Article and Find Full Text PDFObjectives: To investigate the displacement of dentition and stress distribution on periodontal ligament (PDL) during retraction and intrusion of anterior teeth under different proclination of incisors using clear aligner (CA) in cases involving extraction of the first premolars.
Methods: Models were constructed, consisting of the maxilla, PDLs, CA and maxillary dentition without first premolars. These models were then imported to finite element analysis (FEA) software.
Currently, severe shuttle effects and sluggish conversion kinetics are the main obstacles to the advancement of lithium-sulfur (Li-S) batteries. Modification of the battery separator by a catalyst is a promising approach to tackle these problems, but simultaneously obtaining rich catalytic active sites, high conductivity, and remarkable stability remains a great challenge. Herein, a flower-like MXene/MoS/SnS@C heterostructure as the functional intercalation of Li-S batteries was prepared for accelerating the synergistic adsorption-electrocatalysis of sulfur conversion.
View Article and Find Full Text PDFEvidence of antibody-dependent enhancement (ADE) of other viruses has raised concerns about the safety of SARS-CoV-2 vaccines and antibody therapeutics. In vitro studies have shown ADE of SARS-CoV-2 infection. In this study, we also found that vaccination/convalescent sera and some approved monoclonal antibodies can enhance SARS-CoV-2 infection of FcR-expressing B cells in vitro.
View Article and Find Full Text PDFZeolites with uniform micropores are important shape-selective catalysts. However, the external acid sites of zeolites have a negative impact on shape-selective catalysis, and the microporosity may lead to serious diffusion limitation. Herein, we report on the direct synthesis of hierarchical hollow STW-type zeolite single crystals with a siliceous exterior.
View Article and Find Full Text PDFIntroduction: In natural systems, diverse plant communities tend to prevent a single species from dominating. Similarly, management of invasive alien plants may be achieved through various combinations of competing species.
Methods: We used a de Wit replacement series to compare different combinations of sweet potato ( (L.
Practical applications of lithium-sulfur (Li-S) batteries have been hindered by sluggish reaction kinetics and severe capacity decay during charge-discharge cycling due to the notorious shuttle effect of polysulfide and the unfavored deposition and dissolution of Li S. Herein, to address these issues, a double-defect engineering strategy is developed for preparing Co-doped FeP catalyst containing P vacancies on MXene, which effectively improves the bidirectional redox of Li S. Mechanism analysis indicates that P vacancy accelerates Li S nucleation via increased unsaturated sites, and Co doping generates local electric field to reduce the reaction energy barrier and accelerate Li S dissolution.
View Article and Find Full Text PDFThis paper presents an improved empirical modal decomposition (EMD) method to eliminate the influence of the external environment, accurately compensate for the temperature drift of MEMS gyroscopes, and improve their accuracy. This new fusion algorithm combines empirical mode decomposition (EMD), a radial basis function neural network (RBF NN), a genetic algorithm (GA), and a Kalman filter (KF). First, the working principle of a newly designed four-mass vibration MEMS gyroscope (FMVMG) structure is given.
View Article and Find Full Text PDFIn order to remove noise generated during the accelerometer calibration process, an accelerometer denoising method based on empirical mode decomposition (EMD) and time-frequency peak filtering (TFPF) is proposed in this paper. Firstly, a new design of the accelerometer structure is introduced and analyzed by finite element analysis software. Then, an algorithm combining EMD and TFPF is proposed for the first time to deal with the noise of the accelerometer calibration process.
View Article and Find Full Text PDF