Publications by authors named "Yuchen Cai"

Ferroelectric field-effect transistors (FeFETs) commonly utilize traditional oxide ferroelectric materials for their strong remanent polarization. Yet, integrating them with the standard complementary metal oxide semiconductor (CMOS) process is challenging due to the need for lattice matching and the high-temperature rapid thermal annealing process, which are not always compatible with CMOS fabrication. However, the advent of the ferroelectric semiconductor α-InSe offers a compelling solution to these challenges.

View Article and Find Full Text PDF

Background: Weighted blanket is an emerging non-pharmacotherapy for sleep disorders, but its effect on sleep among relatively healthy adults with insomnia remains uncertain. This study aimed to evaluate whether weighted blankets could better improve sleep quality and sleep-related symptoms among adults with insomnia.

Methods: In a prospective, pilot randomized controlled trial conducted in three tertiary hospitals in China, participants with clinical insomnia were randomized (1:1) to receive weighted blanket intervention or normal blanket intervention for 1 month by random-number tables.

View Article and Find Full Text PDF

Flexible and wearable pressure sensors have attracted significant attention in the fields of smart medicine and human health monitoring. Nevertheless, the design and fabrication of degradable disposable pressure sensors still face urgent challenges. Herein, we fabricated poly(3-hydroxybutyrate) (PHB)-reinforced chitosan (CS) piezoelectric films for intelligent sensors through a simple, low-cost, and environmentally friendly roll-forming method.

View Article and Find Full Text PDF

Purpose: Metagenomic next-generation sequencing(mNGS) is a novel molecular diagnostic technique. For nucleic acid extraction methods, both whole-cell DNA (wcDNA) and cell-free DNA (cfDNA) are widely applied with the sample of bronchoalveolar lavage fluid (BALF). We aim to evaluate the clinical value of mNGS with cfDNA and mNGS with wcDNA for the detection of BALF pathogens in non-neutropenic pulmonary aspergillosis.

View Article and Find Full Text PDF

Facial aging involves a continuous sequence of complex, interrelated events that impact numerous facial tissues. The aim of the study was to elucidate the casual relationship between circulating micronutrients and risk of facial aging. A two-sample Mendelian randomization analysis was performed using genetic data from genome-wide association studies.

View Article and Find Full Text PDF

There has been ongoing interest in improving the efficiency of glycoside hydrolase for synthesizing glycoside compounds through protein engineering, given the potential applications of glycoside compounds. In this study, a strategy of modifying the substrate access tunnel was proposed to enhance the efficiency of reverse hydrolysis catalyzed by Aspergillus niger α-L-rhamnosidase. Analysis of the tunnel dynamics identified Tyr299 as a key modifiable residue in the substrate access tunnel.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the expression levels of progranulin (PGRN) in the tears of patients with diabetic retinopathy (DR) versus healthy controls. Additionally, we sought to explore the correlation between PGRN levels and the severity of ocular surface complications in patients with diabetes.

Methods: In this prospective, single-visit, cross-sectional study, patients with DR (n = 48) and age-matched healthy controls (n = 22) were included and underwent dry eye examinations.

View Article and Find Full Text PDF

The concomitant cloning of RNA degradation products is a major concern in standard small RNA-sequencing practices. This not only complicates the characterization of bona fide sRNAs but also hampers cross-batch experimental replicability and sometimes even results in library construction failure. Given that all types of plant canonical small RNAs possess the 3' end 2'-O-methylation modification, a new small RNA sequencing (sRNA-seq) method, designated as PBOX-sRNA-seq, has been developed specifically to capture this modification.

View Article and Find Full Text PDF

The treatment of bone defects caused by fractures or bone tissue lesions has always been a difficult problem in the field of orthopedics. Implantation of high-performance titanium alloy prosthesis is an effective method to treat bone defects. 3D printing technology can produce low-modulus titanium alloy implants with porous structures, providing a better solution to the above problems.

View Article and Find Full Text PDF

Visible-blind ultraviolet (UV) light detection has a wide application range in scenes like space environment monitoring and medical imaging. To realize miniaturized UV detectors with high performance and high integration ability, new device structures without bulky light filters need to be developed based on advanced mechanisms. Here the unipolar barrier van der Waals heterostructure (UB-vdWH) photodetector is reported that realizes filter-free visible-blind UV detection with good stability, robustness, selectivity, and high detection performance.

View Article and Find Full Text PDF

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of VipNms SCN neurons at night.

View Article and Find Full Text PDF

Dynamic vision perception and processing (DVPP) is in high demand by booming edge artificial intelligence. However, existing imaging systems suffer from low efficiency or low compatibility with advanced machine vision techniques. Here, we propose a reconfigurable bipolar image sensor (RBIS) for in-sensor DVPP based on a two-dimensional WSe/GeSe heterostructure device.

View Article and Find Full Text PDF

Heterogeneous electrocatalysis closely relies on the electronic structure of the catalytic materials. The ferroelectric-to-paraelectric phase transition of the materials also involves a change in the state of electrons that could impact the electrocatalytic activity, but such correlation remains unexplored. Here, we demonstrate experimentally and theoretically that the intrinsic electrocatalytic activity could be regulated as exampled by hydrogen evolution reaction catalysis over two-dimensional ferroelectric CuInPS.

View Article and Find Full Text PDF

The emergence of the monkeypox virus (MPXV) outbreak presents a formidable challenge to human health. Emerging evidence suggests that individuals with HIV have been disproportionately affected by MPXV, with adverse clinical outcomes and higher mortality rates. However, the shared molecular mechanisms underlying MPXV and HIV remain elusive.

View Article and Find Full Text PDF

There is limited knowledge about the impact of circulating lipids and lipid-modifying drugs on pterygium development, with conflicting results reported. Our study aimed to address these questions by applying the Mendelian randomization (MR) approach. A two-step MR model was developed.

View Article and Find Full Text PDF

Background And Aims: The Coronavirus Disease-19 (COVID-19) is posing an ongoing threat to human health. Patients of diabetic foot ulcer (DFU) are susceptible to COVID-19-induced adverse outcomes. Nevertheless, investigations into their mutual molecular mechanisms have been limited to date.

View Article and Find Full Text PDF
Article Synopsis
  • The ultrathin nature of 2D layered materials allows for better control of their properties through defects and modifications compared to bulk materials.
  • Innovative designs like moiré superlattices enable precise adjustments to the atomic and electronic systems, leading to tailored functionalities.
  • The study presents scalable atomic-scale patterning in cuprous telluride, achieving controllable switching and highlighting potential uses in image enhancement with memristors.
View Article and Find Full Text PDF

Meibomian gland dysfunction (MGD) is a prevalent inflammatory disorder of the ocular surface that significantly impacts patients' vision and quality of life. The underlying mechanism of aging and MGD remains largely uncharacterized. The aim of this work is to investigate lipid metabolic alterations in age-related MGD (ARMGD) through integrated proteomics, lipidomics and machine learning (ML) approach.

View Article and Find Full Text PDF

Background: Mental health is a vital part of an individual's overall health and well-being, and the relationship between society and individuals has always been a focus of academic and public attention. However, the effect of social equity perceptions on individual mental health remains unclear.

Methods: Data were collected from 8,922 survey respondents with an average age of 47.

View Article and Find Full Text PDF

Fuchs endothelial corneal dystrophy (FECD) is the leading indication for corneal transplantation worldwide. Our aim was to investigate the role of transient receptor potential vanilloid subtype 1 (TRPV1) and the associated immune regulation contributing to this pathological condition. Significant upregulation of TRPV1 was detected in the HO-induced in vitro FECD model.

View Article and Find Full Text PDF

Although continuous monitoring of constituents in complex sweat is crucial for noninvasive physiological evaluation, biofouling on the sweat sensor surface and inadequate flexible self-healing materials restrict its applications. Herein, a fully self-healing and strong anti-biofouling polypeptide complex hydrogel (AuNPs/MoS/Pep hydrogel) with excellent electrochemical performances was created. The anti-fouling electrochemical sweat sensor was fabricated based on the AuNPs/MoS/Pep hydrogel to address these issues.

View Article and Find Full Text PDF

In-sensor computing hardware based on emerging reconfigurable photosensors can effectively reduce redundant data and decrease power consumption, which can greatly promote the evolution of machine vision. However, because of the complex device structures and low integration abilities, the common architectures mainly lie in two dimensions, resulting in low time and area efficiencies. Here we propose a three-dimensional (3D) neuromorphic photosensor array for parallel in-sensor image processing.

View Article and Find Full Text PDF

Flexible and wearable sweat sensors have drawn extensive attention by virtue of their continuous and real-time monitoring of molecular level information. However, current sweat-based sensors still pose several challenges, such as low accuracy for analytes detection, susceptibility to microorganism and poor mechanical performance. Herein, we demonstrated a noninvasive wearable sweat sensing patch composed of an electrochemical sensing system, and a pilocarpine-based iontophoretic system to stimulate sweat secretion.

View Article and Find Full Text PDF

The Coronavirus Disease-19 (COVID-19) pandemic is posing a serious challenge to human health. Burn victims are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to delayed recovery and even profound debilitation. Nevertheless, the molecular mechanisms underlying COVID-19 and severe burn are yet to be elucidated.

View Article and Find Full Text PDF

Although ribosomal RNA processing 15 Homolog (RRP15) has been implicated in the occurrence of various cancers and is considered a potential target for cancer treatment, its significance in colon cancer (CC) is unclear. Thus, this present study aims to determine RRP15 expression and biological function in CC. The results demonstrated a strong expression of RRP15 in CC compared to normal colon specimens, which was correlated with poorer overall survival (OS) and disease-free survival (DFS) of the patients.

View Article and Find Full Text PDF