Proc Natl Acad Sci U S A
June 2024
Reduction of carbon dioxide (CO) by renewable electricity to produce multicarbon chemicals, such as ethylene (CH), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier.
View Article and Find Full Text PDFFarnesoid X receptor (FXR) plays critical regulatory roles in cardiovascular physiology/pathology. However, the role of FXR agonist obeticholic acid (OCA) in sepsis-associated myocardial injury and underlying mechanisms remain unclear. C57BL/6J mice are treated with OCA before lipopolysaccharide (LPS) administration.
View Article and Find Full Text PDFIntroduction: Children receiving extracorporeal membrane oxygenation are prone to delirium. This case report describes the nursing care of a child with delirium who received venoarterial extracorporeal membrane oxygenation. Relevant interventions and precautions are also discussed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO) reduction in acidic electrolytes can surmount the considerable CO loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments.
View Article and Find Full Text PDFCarbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C) chemicals, posing a grand challenge to achieve a single C product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu(OH)NO, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption.
View Article and Find Full Text PDFBackground: Delirium is one of the most common complications in critically ill children. Once delirium occurs, it will cause physical and psychological distress in children and increase the length of their ICU stay and hospitalization costs. Understanding the risk factors for delirium in critically ill children can help develop targeted nursing interventions to reduce the incidence of delirium.
View Article and Find Full Text PDFObjectives: This study aimed to compare the efficacy of double plasma molecular adsorption system (DPMAS) with half-dose plasma exchange (PE) to that of full-dose PE in pediatric acute liver failure (PALF).
Methods: This multicenter, retrospective cohort study was conducted in 13 pediatric intensive care units in Shandong Province, China. DPMAS+PE and single PE therapies were performed in 28 and 50 cases, respectively.
A new species of Xenodermid snake, , was described based on three specimens (two female and one male) collected from the Dabie Mountains of western Anhui Province. It can be distinguished from known congeners by a significant genetic divergence in the mitochondrial gene fragment COI (-distance ≥ 9.4%) and the following combination of characteristics: (1) length of the suture between the internasals being distinctly shorter than between the prefrontals; (2) a single loreal; (3) dorsal scales strongly keeled, in 23 rows throughout the body; (4) two pairs of prefrontals; (5) six supralabials; (6) five infralabials; (7) temporals 2 + 2 + 3 (or 2 + 2 + 4); (8) 141-155 ventrals; (9) 45-55 subcaudals, unpaired; (10) anal entire; (11) weakly iridescent tinged, uniform, brown to black dorsum with vertebral scales and about three adjacent dorsal scales dark brown forming a longitudinal vertebral line from posterior margin of parietals to tail tip; (12) light brown venter, ventral shields wide, visible on both sides, light brown flanks, giving the appearance of a black subcaudal streak.
View Article and Find Full Text PDFFor a long time, chemiresistive gas sensors based on metal oxide semiconductors (MOSs) suffer from higher operating temperatures, resulting in higher energy consumption and instability of the sensors. Generally, a MOS-based chemiresistive gas sensor being able to work at room temperature is considered to be outstanding already. Here, a highly sensitive NO gas sensor based on the carbon dots-WO heterostructure, which can work below room temperature at 6 °C, is fabricated.
View Article and Find Full Text PDFBackground: Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury.
View Article and Find Full Text PDFBackground: Myeloid-derived suppressor cells (MDSCs) expansion is an important mechanism underlying immunosuppression during sepsis. Though continuous renal replacement therapy (CRRT) may attenuate hyperinflammatory response in sepsis, its role in regulating MDSCs is unknown. The aim of this study was to assess the potential role of CRRT involved in sepsis-induced MDSCs expansion in pediatric sepsis.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has recently emerged as a promising, targeted treatment modality for glioblastoma (GBM) which is the most vicious type of brain tumor. Successful GBM-PDT hinges upon light activation of a photosensitizer accumulated in the tumor. However, inadequate tumor accumulation of photosensitizer severely limits the success of PDT of GBM.
View Article and Find Full Text PDF