Publications by authors named "Yucai Xu"

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic joint inflammation and cartilage damage. Current therapeutic strategies often result in side effects, necessitating the development of targeted and safer treatment options. This study introduces a novel nanotherapeutic system, 2-APB@DGP-MM, which utilizes macrophage membrane (MM)-encapsulated nanoparticles (NPs) for the targeted delivery of 2-Aminoethyl diphenylborinate (2-APB) to inflamed joints more effectively.

View Article and Find Full Text PDF

Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance.

View Article and Find Full Text PDF

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation.

View Article and Find Full Text PDF

A direct and sensitive method for the detection of methyl centralite (MC) and ethyl centralite (EC) as gunshot residues (GSRs) has been developed. This method uses desorption electrospray ionization (DESI)-tandem mass spectrometry and directly desorbs and detects analytes from surfaces without any sampling process. Typical transitions for MC and EC, m/z 241 to m/z 134 and m/z 269 to m/z 148, respectively, were used to improve the assay sensitivity.

View Article and Find Full Text PDF