World J Microbiol Biotechnol
November 2023
Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.
View Article and Find Full Text PDFIn this study, nano-scale hydroxyapatite (HAP) powder was successfully synthesized from waste eggshells and combined with Lysinibacillus cavernae CR-2 to form bio-microcapsules, which facilitated the enhanced removal of Cr(VI) from wastewater. The effects of various parameters, such as bio-microcapsule dosage, HAP dosage, and initial Cr(VI) concentration on Cr(VI) removal, were investigated. Under different treatment conditions, the Cr(VI) removal followed the order of LC@HAP (90.
View Article and Find Full Text PDFWater Environ Res
September 2023
This study investigates the biomineralization of lead ions by Aspergillus niger from aqueous environments, focusing on the dynamic effects of fungal metabolism and biological components. Three biomolecules (glutamate, methionine, and lysine) were used to induce lead oxalate mineralization under lead stress. Comparative experiments were conducted to analyze the growth characteristics and Pb (II) removal ability of A.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2022
High concentrations of lead (Pb) in agricultural soil and wastewater represent a severe threat to the ecosystem and health of living organisms. Among available removal techniques, microbial remediation has attracted much attention due to its lower cost, higher efficiency, and less impact on the environment; hence, it is an effective alternative to conventional physical or chemical Pb-remediation technologies. In the present review, recent advances on the Pb-remediation mechanisms of bacteria, fungi and microalgae have been reported, as well as their detoxification pathways.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2022
Microbial remediation, utilizing reduction of Cr(VI) to Cr(III), is considered a promising method for lowering toxic environmental chromium levels. In this study, a Cr(VI)-resistant fungal strain, Fusarium proliferatum S4 (F. proliferatum), was isolated from seriously chromium-polluted soil at Haibei Chemical Plant, China.
View Article and Find Full Text PDFLead (Pb) is widely distributed in nature and has important industrial applications, while being highly toxic. In this study, the Pb(II) biosorption and immobilization behavior of Penicillium polonicum was investigated through surface morphology observation and multiple experimental analysis. In addition, the molecular mechanism of Pb(II) immobilization was further explored through proteomics.
View Article and Find Full Text PDFObjectives: To understand the mechanism of Pb(II) immobilized by Pb(II)-tolerant microbes.
Results: Aspergillus tubingensis isolated from the lead-zine mine was investigated through surface morphology observation and multiple experimental analysis in order to elucidate the Pb(II) biosorption and immobilization behavior. The maximum Pb(II) uptake capacity of A.