Front Cardiovasc Med
December 2023
Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that increases the risk of stroke and other cardiovascular complications. Oral anticoagulants (OACs) are effective in reducing this risk. To investigate the knowledge, attitude and practice (KAP) toward OACs among patients with AF.
View Article and Find Full Text PDFIn this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex.
View Article and Find Full Text PDFFront Med (Lausanne)
November 2023
Osteoporosis stands out as a prevalent metabolic disorder, bearing significant repercussions on human well-being and overall quality of life. It remains an urgent concern within the global public health framework due to its widespread occurrence. Osteoporosis arises from an abnormal metabolism in osteoblasts and osteoclasts, resulting in a disruption of the delicate equilibrium between bone formation and bone resorption.
View Article and Find Full Text PDFIn this work, a metal-organic framework@covalent organic framework composite (TPN-COF@Fe-MIL-100) was prepared and used as a sensing material to construct an aptasensor for trace detection of tetracycline (TET). The TPN-COF@Fe-MIL-100 integrates a large surface area, porous structure, excellent electrochemical activity, rich chemical functionality, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the TPN-COF@Fe-MIL-100-based aptasensor shows high sensitivity for detecting TET specific recognition between aptamer and TET to form G-quadruplex.
View Article and Find Full Text PDFBackground: Hip joint-preserving treatment options for osteonecrosis of the femoral head (ONFH) have been a research hotspot in recent years. The combination of Chinese and Western medicine has been used in clinical practice to treat early- and mid-stage ONFH. However, there is still a lack of high-quality evidence to verify the effectiveness and safety of this approach.
View Article and Find Full Text PDFIn this work, a biological metal-organic framework@conductive covalent organic framework composite (bio-MOF@con-COF, denoted as Zn-Glu@PTBD-COF, here, Glu indicates L-glutamic acid, PT indicates 1,10-phenanthroline-2,9-dicarbaldehyde, and BD indicates benzene-1,4-diamine) was prepared and used as sensing material to fabricate aptasensor for trace detection of Staphylococcus aureus (SA). The Zn-Glu@PTBD-COF integrates the mesoporous structure and abundant defects of the MOF framework, the excellent conductivity of the COF framework, and high stability of the composite, providing abundant active sites to effectively anchor aptamers. As a result, the Zn-Glu@PTBD-COF-based aptasensor shows high sensitivity to detect SA via specific recognition between aptamer and SA, as well as the formation of aptamer-SA complex.
View Article and Find Full Text PDFAlthough the rapid advances of wireless technologies and electronic devices largely improve the quality of life, electromagnetic (EM) pollution increases the risk of exposure to EM radiation. Developing high-efficiency absorbers with a rational structure and wideband characteristics is of great significance to eliminate radiation pollution. Herein, derived biochar which would provide a suitable surface and multiple polarizations has been prepared as the supporter to anchor nanoparticles.
View Article and Find Full Text PDFBiomass-derived carbon materials have received a surge of scientific attention to develop lightweight and broadband microwave absorbers. Herein, rodlike porous carbon materials derived from cotton have been fabricated with uniformly dispersed CoFeOnanoparticles via facile and scalable process. The combination of magnetic particles and carbonaceous material is advantageous to realize the magnetic-dielectric synergistic effect which could effectively promote the dissipation of incident waves, giving rise to an optimal reflection loss value of -48.
View Article and Find Full Text PDFPartially- and fully-unzipped nitrogen-doped carbon nanotubes (NCNTs) were prepared by unzipping pristine NCNTs and three carbon nanostructures were applied to support Au nanoparticles (AuNPs) to form nanocomposites (Au/NCNTs, Au/PU-NCNTs, and Au/FU-NCNTs). The electrochemical behavior and the electrocatalytic activities of the nanocomposite-modified electrodes were examined. The oxygen functional groups, doped N content, and AuNP loaded concentrations are dependent on the unzipping-degree and then affect the electrochemical response and electrocatalytic performance of the electrodes.
View Article and Find Full Text PDF