Publications by authors named "Yubo Cao"

Developing effective therapies for type 2 diabetes mellitus (T2DM) remains a critical global health priority. This study explored the novel antidiabetic potential of MCPS-3, a polysaccharide derived from L., and its underlying mechanisms in a high-fat diet and streptozotocin-induced T2DM mouse model.

View Article and Find Full Text PDF

Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.

View Article and Find Full Text PDF

Pectin, a natural polysaccharide predominantly sourced from the cell walls of terrestrial plants, is widely regarded for its gelling, thickening, and stabilizing properties, which have extensive applications in the food, pharmaceutical, and biotechnological industries. This review discusses the mechanistic pathways by which pectin mediates its lipid-lowering properties, such as pectin's antioxidant activity, the modulation of gut microbiota, its anti-inflammatory properties, its capacity to bind bile acids and cholesterol, and its impact on the expression of genes associated with lipid metabolism. To enhance its hypolipidemic properties, chemical, physical, and enzymatic modification techniques are explored.

View Article and Find Full Text PDF

The significant increase in antibiotic resistance genes (ARGs) in organic solid wastes (OSWs) has emerged as a major threat to the food chain. Aerobic composting is a widely used technology for OSW management, with the potential to influence the fate of AGRs. However, the variability of the ARG elimination effects reported in different studies has highlighted the uncertainty regarding the effects of composting on ARGs.

View Article and Find Full Text PDF

This study investigated the molecular mechanism underlying the binding interaction between apigenin (API) and α-glucosidase (α-glu) by a combination of experimental techniques and computational simulation strategies. The spontaneously formation of stable API-α-glu complex was mainly driven by hydrogen bonds and hydrophobic forces, leading to a static fluorescence quenching of α-glu. The binding of API induced secondary structure and conformation changes of α-glu, decreasing the surface hydrophobicity of protein.

View Article and Find Full Text PDF

With the increase of organic solid wastes (OSWs), current waste management practices, such as landfill, incineration, and windrow composting, have shown weaknesses in both resource recycling and environmental protection. Co-composting has been used to achieve nutrient and carbon recycling but is accused of high ammonia emission and low degradation efficiency. Therefore, this study developed a precision co-composting strategy (S3, which adds functional bacteria generated from food processing waste to a co-composting system) and compared it with the current OSW treatment strategy (S1) and traditional co-composting strategy (S2) from a life cycle assessment (LCA) perspective.

View Article and Find Full Text PDF

Chaenomeles sinensis (Thouin) Koehne fruit is a rich source of medicinally and nutritionally important natural phytochemicals that benefit human health. Based on the information provided, we hypothesized that Chaenomeles sinensis (Thouin) Koehne fruit polyphenols (CSFP) possessed in vivo protective effect of on high-fat diet (HFD)-induced obesity and hepatic steatosis. Specific pathogen-free male C57BL/6J mice were randomly divided into 3 groups and fed with a low-fat diet, HFD, or HFD supplemented with CSFP by intragastric administration for 14 weeks.

View Article and Find Full Text PDF

To promote efficient conversion of lignocellulose to humus (HS) during composting, a novel bio-electrochemical technology was applied and explored the effect and mechanism of electrification on carbon conversion during different composting periods. The results showed that supplementary electric field played different roles during composting. In the early stage, organic matter mineralization was significantly accelerated under electric field application, that was embodied in a 29.

View Article and Find Full Text PDF

To investigate the mechanisms underlying effects of biochar and calcium carbonate (CaCO) addition on nitrous oxide (NO) emissions during composting, this paper conducted a systematic study on mineral nitrogen (N), dissolved organic carbon (C) and N, sources of NO, and functional genes. Biochar and CaCO addition decreased NO emissions by 26.5-47.

View Article and Find Full Text PDF

Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207.

View Article and Find Full Text PDF

G protein-coupled receptors engage both G proteins and β-arrestins, and their coupling can be biased by ligands and mutations. Here, to resolve structural elements and mechanisms underlying effector coupling to the angiotensin II (AngII) type 1 receptor (AT1R), we combined alanine scanning mutagenesis of the entire sequence of the receptor with pharmacological profiling of Gα and β-arrestin engagement to mutant receptors and molecular dynamics simulations. We showed that Gα coupling to AT1R involved a large number of residues spread across the receptor, whereas fewer structural regions of the receptor contributed to β-arrestin coupling regulation.

View Article and Find Full Text PDF

The potential of the Internet of Body (IoB) to support healthcare systems in the future lies in its ability to enable proactive wellness screening through the early detection and prevention of diseases. One promising technology for facilitating IoB applications is near-field inter-body coupling communication (NF-IBCC), which features lower power consumption and higher data security when compared to conventional radio frequency (RF) communication. However, designing efficient transceivers requires a profound understanding of the channel characteristics of NF-IBCC, which remain unclear due to significant differences in the magnitude and passband characteristics of existing research.

View Article and Find Full Text PDF

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-β to the activin A pathway. We found that TGF-β upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D.

View Article and Find Full Text PDF

Closing the carbon (C) and nitrogen (N) balance has yet to be achieved in aerobic bioprocess due to current methodological drawbacks in the frequency of sampling and detection and the challenge in direct measurement of instantaneous N emission. To address this issue, a novel system was developed enabling simultaneous and online determination of gaseous C and N species (N, NO, NO, NH, CO and CH) from aerobic composting at a high frequency of 120 times·d. A helium‑oxygen gas mixture was used to replace the air in the system to enable direct measurement of N emission, and three different gas exchange methods were assessed in their ability to minimize atmospheric background N: 1) the N-free gas purging method; 2) one cycle of the evacuation-refilling procedure; 3) one cycle of evacuating and refilling followed by N-free gas purging.

View Article and Find Full Text PDF

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved.

View Article and Find Full Text PDF

This paper pushes the envelope on decomposing camouflaged regions in an image into meaningful components, namely, camouflaged instances. To promote the new task of camouflaged instance segmentation of in-the-wild images, we introduce a dataset, dubbed CAMO++, that extends our preliminary CAMO dataset (camouflaged object segmentation) in terms of quantity and diversity. The new dataset substantially increases the number of images with hierarchical pixel-wise ground truths.

View Article and Find Full Text PDF

Enhancing electron transfer through directly elevating electric potential has been verified to reduce gaseous emissions from composting. Reducing electric resistance of composting biomass might be a choice to further strengthening electron transfer. Here, the effects of chemical electrolytes addition on gaseous Nitrogen emission in electric field assistant composting were investigated.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and β-arrestins (βarrs).

View Article and Find Full Text PDF

Targeted options to reduce nitrous oxide (NO) emission from composting is scarce due to challenges in disentangling the complex NO production pathways. Here, combined approaches of nitrogen form analysis, isotopocule mapping, quantitative PCR, and Illumina MiSeq sequencing were used to differentiate NO production pathways and decipher the underlying biochemical mechanisms. Results suggested that most NO was produced at the latter stage through nitrifier denitrification.

View Article and Find Full Text PDF

Background: The 2008 and 2012 United States Preventive Services Task Force (USPSTF) recommendations against prostate-specific antigen (PSA) screening have led to changes in the incidence pattern of prostate cancer. We sought to examine rates and trends in stage-specific prostate cancer incidence by age and race/ethnicity using the most recent data obtained from Surveillance, Epidemiology, and End Results (SEER) program.

Methods: SEER*Stat version 8.

View Article and Find Full Text PDF

The aim of this study was to explore a novel method to immobilize heavy metals (HM) in composting through increasing the combination of these with humic substances. An electric-field assistant technique was applied to strengthen biomass biodegradation and assess the impact on the humification process and HM immobilization in composting. Results demonstrated that the application of an electric field enriched bacterial abundance and enhanced bacterial metabolism.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinoma (LUAD) is one of the main subtypes of lung cancer. Hundreds of metabolic genes are altered consistently in LUAD; however, their prognostic role remains to be explored.

View Article and Find Full Text PDF

Pig production systems in China are shifting from small to industrial scale. Significant variation in housing ammonia (NH) emissions can exist due to differences in diet, housing design, and management practices. However, there is a knowledge gap regarding the impacts of farm-scale in China, which may be critical in identifying hotspots and mitigation targets.

View Article and Find Full Text PDF

β-arrestins (βarrs) are key regulators of G protein-coupled receptor (GPCR) signaling and trafficking, and their knockdown typically leads to a decrease in agonist-induced ERK1/2 MAP kinase activation. Interestingly, for some GPCRs, knockdown of βarr1 augments agonist-induced ERK1/2 phosphorylation although a mechanistic basis for this intriguing phenomenon is unclear. Here, we use selected GPCRs to explore a possible correlation between the spatial positioning of receptor phosphorylation sites and the contribution of βarr1 in ERK1/2 activation.

View Article and Find Full Text PDF

The angiotensin II (AngII) type 1 receptor (AT1R), a member of the G protein-coupled receptor (GPCR) family, signals through G proteins and β-arrestins, which act as adaptors to regulate AT1R internalization and mitogen-activated protein kinase (MAPK) ERK1/2 activation. β-arrestin-dependent ERK1/2 regulation is the subject of important studies because its spatiotemporal control remains poorly understood for many GPCRs, including AT1R. To study the link between β-arrestin-dependent trafficking and ERK1/2 signaling, we investigated three naturally occurring AT1R variants that show distinct receptor-β-arrestin interactions: A163T, T282M, and C289W.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh0d8812js8mi69c6i52fpa1ivurko6ni): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once