The kidney vasculature has a complex arrangement, which runs in both series and parallel to perfuse the renal tissue and appropriately filter plasma. Recent studies have demonstrated that the development of this vascular pattern is dependent on netrin-1 secreted by renal stromal progenitors. Mice lacking netrin-1 develop an arterial tree with stochastic branching, particularly of the large interlobar vessels.
View Article and Find Full Text PDFIntroduction: Continuous cropping challenges have gradually emerged as pivotal factors limiting the sustainable development of agricultural production. Allelopathicals are considered to be the primary obstacles. However, there is limited information on allelopathic accumulation across various continuous cropping years and its correlation with the associated challenges.
View Article and Find Full Text PDFThe intricate vascular system of the kidneys supports body fluid and organ homeostasis. However, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood.
View Article and Find Full Text PDFBlood filtering by the kidney requires the establishment of an intricate vascular system that works to support body fluid and organ homeostasis. Despite these critical roles, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood.
View Article and Find Full Text PDFIn the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a degenerative disease of the retina that affects approximately 1 million people worldwide. There are multiple genetic causes of this disease, for which, at present, there are no effective therapeutic strategies. In the present report, we utilized broad spectrum metabolomics to identify perturbations in the metabolism of the rd10 mouse, a genetic model for RP that contains a mutation in Pde6β.
View Article and Find Full Text PDFPurpose: The mechanisms that trigger retinal degeneration are not well understood, despite the availability of several animal models with different mutations. In the present report, the mouse, a model for retinitis pigmentosa (RP) that contains a mutation in the gene for PDE6β (), is used to evaluate gliosis, as a marker for retinal stress, and cyclic AMP response element binding protein (CREB) phosphorylation, which may be important early in retinal degeneration.
Methods: Wild-type C57Bl6J and mice raised under cyclic light were examined for changes in gliosis and CREB phosphorylation for approximately 3 weeks beginning at P14 to P17 using immunocytochemistry.
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals.
View Article and Find Full Text PDF