Publications by authors named "Yubin Peng"

Controllable droplet manipulation has diverse applications; however, limited methods exist for externally manipulating droplets in confined spaces. Herein, we propose a portable triboelectric electrostatic tweezer (TET) by integrating electrostatic forces with a superhydrophobic surface that can even manipulate droplets in an enclosed space. Electrostatic induction causes the droplet to be subjected to an electrostatic force in an electrostatic field so that the droplet can be moved freely with the TET on a superhydrophobic platform.

View Article and Find Full Text PDF

Numerous studies have demonstrated the impact of flavor cues on visual search, yet the underlying mechanisms remain elusive. In this experiment, we used event-related potentials (ERPs) to examine whether, and if so, how flavor information could lead to attentional capture by, and suppression of, flavor-associated colors. The participants were asked to taste certain flavored beverages and subsequently complete a shape-based visual search task, while their neural activities were simultaneously recorded.

View Article and Find Full Text PDF

Fog harvesting is an effective way to relieve water shortages in arid regions; thus, improving the efficiency of fog harvesting is urgently needed for both academic research and practical applications. Here, we report an origami patterned Janus (O-P-Janus) membrane using laser-ablated copper foams inspired by origami handcraft and traditional Chinese architecture. Compared to the planar fully ablated Janus membrane, our O-P-Janus membrane, with selectively ablated rectangular areas, exhibits an exceptional water collection rate (WCR) of approximately 267%.

View Article and Find Full Text PDF

The functionality of tunable liquid droplet adhesion is crucial for many applications such as self-cleaning surfaces and water collectors. However, it is still a challenge to achieve real-time and fast reversible switching between isotropic and anisotropic liquid droplet rolling states. Inspired by the surface topography on lotus leaves and rice leaves, herein we report a biomimetic hybrid surface with gradient magnetism-responsive micropillar/microplate arrays (GMRMA), featuring dynamic fast switching toward different droplet rolling states.

View Article and Find Full Text PDF

Manipulation of droplets has increasingly garnered global attention, owing to its multifarious potential applications, including microfluidics and medical diagnostic tests. To control the droplet motion, geometry-gradient-based passive transport has emerged as a well-established strategy, which induces a Laplace pressure difference based on the droplet radius differences in confined state and transport droplets with no consumption of external energy, whereas this transportation method has inevitably shown some critical limitations: unidirectionality, uncontrollability, short moving distance, and low velocity. Herein, a magnetocontrollable lubricant-infused microwall array (MLIMA) is designed as a key solution to this issue.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research indicated that familiarity might improve associative memory after unitization, but the specific cognitive processes involved are still unclear.
  • This study examined how the brain processes memory of Chinese characters before and after unitization, finding that unitization led to better recognition performance.
  • Results showed increased activation in the hippocampus and parahippocampal gyrus after unitization, suggesting that this process enhances recollection-based memory rather than familiarity-based recognition, highlighting the importance of semantic relations in memory encoding.*
View Article and Find Full Text PDF

Here, the concept of "aerofluidics," in which a system uses microchannels to transport and manipulate trace gases at the microscopic scale to build a highly versatile integrated system based on gas-gas or gas-liquid microinteractions is proposed. A kind of underwater aerofluidic architecture is designed using superhydrophobic surface microgrooves written by a femtosecond laser. In the aqueous medium, a hollow microchannel is formed between the superhydrophobic microgrooves and the water environment, which allows gas to flow freely underwater for aerofluidic devices.

View Article and Find Full Text PDF

Intelligent droplet manipulation plays a crucial role in both scientific research and industrial technology. Inspired by nature, meniscus driving is an ingenious way to spontaneously transport droplets. However, the shortages of short-range transport and droplet coalescence limit its application.

View Article and Find Full Text PDF

Directional manipulation of submerged bubbles is fundamental for both theoretical research and industrial production. However, most current strategies are limited to the upward motion direction, complex surface topography, and additional apparatuses. Here, we report a meniscus-induced self-transport platform, namely, a slippery oil-infused pillar array with height-gradient (SOPAH) by combining femtosecond laser drilling and replica mold technology.

View Article and Find Full Text PDF

Previous research has associated frequently enforced solo dining with negative consequences on psychological well-being, but the problem of having to eat alone may be solved by seeking mealtime companions in the digital space by watching an eating broadcast (i.e., Mukbang) or videoconferencing with others (i.

View Article and Find Full Text PDF

High-performance droplet transport is crucial for diverse applications including biomedical detection, chemical micro-reaction, and droplet microfluidics. Despite extensive progress, traditional passive and active strategies are restricted to limited liquid types, small droplet volume ranges, and poor biocompatibilities. Moreover, more challenges occur for biological fluids due to large viscosity and low surface tension.

View Article and Find Full Text PDF

Microalgae bio-oil production is related to the sustainable use of world energy in the future. In the present work, catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production were investigated. The results show that the rare earth compounds as catalysts contributed to significantly accelerating the pyrolysis of microalgae via reducing the activation energy of pyrolysis process.

View Article and Find Full Text PDF

Retrieval practice effect refers to better long-term retention enhanced by active retrieval compared to re-studying, which has been widely demonstrated. However, controversies remain as to whether the underlying mechanism of this effect could be attributed to semantic elaboration. We investigated whether retrieval practice and elaboration were equivalent by observing the underlying cognitive processes of the two conditions using corresponding event-related potentials measures of associative memory and item memory.

View Article and Find Full Text PDF

The testing effect refers to the fact that testing enhances delayed memory more than restudying does. Previous studies revealed that the testing effect can be influenced by the delay period, the type of testing, and other factors. However, a few studies have focused on how the testing effect interacts with the properties of words, such as the concreteness effect.

View Article and Find Full Text PDF

Objective: To describe characteristic of hand-wrist bone development in adolescents of 14 years old in China, and to estimate trend of bone development of them.

Methods: A total of 109 adolescents of 14 years was selected as subjects (males: 53, females: 56). X-rays examination of their left hand-wrist bone were performed and analyzed.

View Article and Find Full Text PDF