Aqueous room-temperature phosphorescence (RTP) materials have garnered considerable attention for their significant potential across various applications such as bioimaging, sensing, and encryption. However, establishing a universally applicable method for achieving aqueous RTP remains a substantial challenge. Herein, we present a versatile supramolecular strategy to transition RTP from solid states to aqueous phases.
View Article and Find Full Text PDFThe dynamic nature of noncovalent bonds in peptide self-assembly allows for selective accommodation of guest molecules. However, it remains unclear how to harness coassembly to reinforce the host peptides and simultaneously improve the application defects of guest molecules. This study aims to achieve supramolecular synergy between the host and guest, further expanding the functional space of the hybrid nanostructures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Branched alkanes, which enhance the octane number of gasoline, can be produced from waste polyethylene. However, achieving highly selective production of branched alkanes presents a significant challenge in the upcycling of waste polyethylene. Here, we report a one-pot process to convert polyethylene into gasoline-range hydrocarbons (C-C) with yield of 73.
View Article and Find Full Text PDFPolyamorphic transition (PT) is a compelling and pivotal physical phenomenon in the field of glass and materials science. Understanding this transition is of scientific and technological significance, as it offers an important pathway for effectively tuning the structure and property of glasses. In contrast to the PT observed in conventional metallic glasses (MGs), which typically exhibit a pronounced first-order nature, herein we report a continuous PT (CPT) without first-order characteristics in high-entropy MGs (HEMGs) upon heating.
View Article and Find Full Text PDFThe submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates.
View Article and Find Full Text PDFConversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.
View Article and Find Full Text PDFAn organic photovoltaic bulk heterojunction comprises of a mixture of donor and acceptor materials, forming a semi-crystalline thin film with both crystalline and amorphous domains. Domain sizes critically impact the device performance; however, conventional X-ray scattering techniques cannot detect the contrast between donor and acceptor materials within the amorphous intermixing regions. In this study, we employ neutron scattering and targeted deuteration of acceptor materials to enhance the scattering contrast by nearly one order of magnitude.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
The controlled peptide self-assembly and disassembly are not only implicated in many cellular processes but also possess huge application potential in a wide range of biotechnology and biomedicine. β-sheet peptide assemblies possess high kinetic stability, so it is usually hard to disassemble them rapidly. Here, we reported that both the self-assembly and disassembly of a designed short β-sheet peptide IIIGGHK could be well harnessed through the variations of concentration, pH, and mechanical stirring.
View Article and Find Full Text PDFThe topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters.
View Article and Find Full Text PDFPolypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water.
View Article and Find Full Text PDFFluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching.
View Article and Find Full Text PDFConsiderable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τ) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers () on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between relaxivity () and in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing .
View Article and Find Full Text PDFAiming at the creation of polymers with attractive dynamic properties, herein, rotaxane-branched dendronized polymers (DPs) with rotaxane-branched dendrons attached onto the polymer chains are proposed. Starting from macromonomers with both rotaxane-branched dendrons and polymerization site, targeted rotaxane-branched DPs are successfully synthesized through ring-opening metathesis polymerization (ROMP). Interestingly, due to the existence of multiple switchable [2]rotaxane branches within the attached dendrons, anion-induced reversible thickness modulation of the resultant rotaxane-branched DPs is achieved, which further lead to tunable thermal and rheological properties, making them attractive platform for the construction of smart polymeric materials.
View Article and Find Full Text PDFThe black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase.
View Article and Find Full Text PDFA small-angle neutron scattering (SANS) instrument at the China Spallation Neutron Source (CSNS) is an operating instrument for studying structures and inhomogeneities with dimensions ranging from 1 to 100 nm. Preparing multiple samples at once and measuring them sequentially is a common approach in SANS experiments to reduce neutron beamline wastes and increase experimental efficiency. We present the development of an automatic sample changer for the SANS instrument, including system design, thermal simulation, optimization analysis, structure design details, and temperature control test results.
View Article and Find Full Text PDFSurfactant-like short peptides are a kind of ideal model for the study of chiral self-assembly. At present, there are few studies on the chiral self-assembly of multicharged surfactant-like peptides. In this study, we adopted a series of short peptides of Ac-IKGK-NH with different combinations of -lysine and -lysine residues as the model molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2023
Hypothesis: Worm-like micelles are susceptible to heating owing to the fast dynamic exchange of molecules between micelles. Inhibition of such exchange could afford robust worm-like micelles, which is expected to largely improve rheology properties at high temperatures.
Experiments: A cationic surfactant docosyl(trimethyl)azanium chloride (DCTAC) and a strongly hydrophobic organic counterion 3-hydroxy naphthalene-2-carboxylate (SHNC) were used for the worm-like micelles fabrication.
Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit.
View Article and Find Full Text PDFCellulose nanocrystal (CNC) materials grant abundant possibilities for insulation, however, their extensive application is hindered by the intrinsic tradeoff between their thermal insulating performance and mechanical properties. Here, we show that CNC aerogels with balanced thermal and mechanical performance can be fabricated a 1 nm metal oxide cluster (phosphotungstic acid, PTA)-assisted unidirectional freeze-drying processing. The as-prepared hybrid aerogels with hierarchical porous structures consisting of layer-by-layer CNC nanosheets enable the decoupling of the strengthening of mechanical properties and the enhancement of thermal insulating capabilities.
View Article and Find Full Text PDFCorneal transplantation is impeded by donor shortages, immune rejection, and ethical reservations. Pre-made cornea prostheses (keratoprostheses) offer a proven option to alleviate these issues. Ideal keratoprostheses must possess optical clarity and mechanical robustness, but also high permeability, processability, and recyclability.
View Article and Find Full Text PDFAs a versatile class of semiconductors, diketopyrrolopyrrole (DPP)-based conjugated polymers are well suited for applications of next-generation plastic electronics because of their excellent and tunable optoelectronic properties a rational design of chemical structures. However, it remains a challenge to unravel and eventually influence the correlation between their solution-state aggregation and solid-state microstructure. In this contribution, the solution-state aggregation of high molecular weight PDPP3T is effectively enhanced by solvent selectivity, and a fibril-like nanostructure with short-range and long-range order is generated and tuned in thin films.
View Article and Find Full Text PDFWe report the construction of molecular compartments by the growth of narrow-band semiconductor nanoparticles, tungsten oxide and its hydrate, in the mesopores of a metal-organic framework (MOF), MIL-100-Fe. The location of these nanoparticles in pores and their spatial arrangement across the MOF crystal are unveiled by powder X-ray diffraction and small-angle neutron scattering, respectively. Such a composition with pore-level precision leads to efficient overall conversion of gas-phase CO and HO to CO, CH, and HO under visible light.
View Article and Find Full Text PDF