Despite their critical importance in drug development and biochemistry, efficiently synthesizing α-glycosyl azides has continued to pose significant challenges. In this report, we introduce a universal and practical radical reaction for the stereoselective synthesis of α-glycosyl azides using bench-stable allyl glycosyl sulfones as the donor. This method is characterized by its mild reaction conditions, high stereoselectivity, and extensive scope of glycosyl units.
View Article and Find Full Text PDFA nickel-catalyzed multicomponent reaction that rapidly and reliably accesses [1,3]-bis-organometallic reagents from allenes is reported. The protocol exhibits a predictable regioselectivity pattern that enables the incorporation of B,B(Si) fragments across the allene backbone under mild conditions, thus offering a complementary platform for accessing polyorganometallic reagents possessing both sp and sp hybridization from readily available precursors.
View Article and Find Full Text PDFSite-selective modification of complex molecules allows for rapid accesses to their analogues and derivatives, and, therefore, offers highly valuable opportunities to probe their functions. However, to selectively manipulate one out of many repeatedly occurring functional groups within a substrate represents a grand challenge in chemistry. Yet more demanding is to develop methods in which alterations to the reaction conditions lead to switching of the specific site of reaction.
View Article and Find Full Text PDFWe have found that readily available N-alkyl hydroxylamines are effective reagents for the amination of organoboronic acids in the presence of trichloroacetonitrile. This amination reaction proceeds rapidly at room temperature and in the absence of added metal or base, it tolerates a remarkable range of functional groups, and it can be used in the late-stage assembly of two complex units.
View Article and Find Full Text PDF