Objective: Neuropathic pain has been considered as one of the most serious chronic pain subtypes and causes intolerable suffering to patients physically and mentally. This study aimed to verify the analgesic effect of intravenous administration of human umbilical cord mesenchymal stem cells (HUC-MSCs) upon rats with chronic constriction injury (CCI)-induced neuropathic pain and the concomitant mechanism via modulating microglia.
Methods: 30 male SD rats were randomized divided into three groups (n = 10 per group): Sham + Saline group (S&S group), CCI + Saline group (C&S group) and CCI + HUC-MSCs group (C&U group).
The carbon fiber reinforced polyetheretherketone (CFR-PEEK) has been increasingly used in orthopedics dentistry due to its excellent biocompatibility and mechanical properties. However, the biological inertness and poor antibacterial activity limit its clinical applications. This paper focused on the performances of CFR-PEEK with porous morphology that were exposed to different sulfonation periods (1, 3, 5, and 10 min, corresponding to CP-S1, CP-S3, CP-S5, and CP-S10, respectively).
View Article and Find Full Text PDFBackground And Objective: Ultrasound has been widely used in the diagnosis and minimally invasive treatment of peripheral nerve diseases in the clinic, but there is still a lack of feasibility analysis in rodent models of neurological disease. The purpose of this study was to investigate the changes in the cross-sectional area of the sciatic nerve of different genders and body weights and to explore the effectiveness and reliability of an ultrasound-guided block around the sciatic nerve in living rats.
Methods: Using ultrasound imaging anatomy of the sciatic nerve of rats, the cross-sectional area of the sciatic nerve in rats of different genders from 6 to 10 weeks old was calculated, and then analyzed its correlation with body weight.
Background: Existing implant materials cannot meet the essential multifunctional requirements of repairing infected bone defects, such as antibacterial and osteogenesis abilities. A promising strategy to develop a versatile biomimicry composite of the natural bone structure may be accomplished by combining a multifunctional nanoparticle with an organic scaffold.
Methods: In this study, a quaternary ammonium silane-modified mesoporous silica containing nano silver (Ag@QHMS) was successfully synthesized and further combined with silk fibroin (SF) to fabricate the multifunctional nano-reinforced scaffold (SF-Ag@QHMS) using the freeze-drying method.
Efficient delivery of bone morphogenetic protein-2 (BMP-2) with desirable bioactivity is still a great challenge in the field of bone regeneration. In this study, a silk fibroin/chitosan scaffold incorporated with BMP-2-loaded mesoporous hydroxyapatite nanoparticles (mHANPs) was prepared (SCH-L). BMP-2 was preloaded onto mHANPs with a high surface area before mixing with a silk fibroin/chitosan composite.
View Article and Find Full Text PDFTreatments for infectious bone defects such as periodontitis require antibacterial and osteogenic differentiation capabilities. Nanotechnology has prompted the development of multifunctional material. In this research, we aim to synthesize a nanoparticle that can eliminate periodontal pathogenic microorganisms and simultaneously stimulate new bone tissue regeneration and mineralization.
View Article and Find Full Text PDFGraphene oxide (GO) and its derivatives are currently being explored for the modification of bone biomaterials. However, the effect of GO coatings on immunoregulation and subsequent impacts on osteogenesis are not known. In this study, GO was coated on pure titanium using dopamine.
View Article and Find Full Text PDF