Publications by authors named "Yube Yamaguchi"

Genome editing technologies such as CRISPR/Cas9 have been developed in the last decade and have been applied to new food technologies. Genome-edited food (GEF) is a crucial issue with those new food technologies. Thus, each country has established GEF governance systems to maximize benefits and minimize risks.

View Article and Find Full Text PDF
Article Synopsis
  • "Transgrafting" is a new plant breeding technique that allows non-transgenic plants to gain benefits from transgenic plants by grafting them together.
  • In a study involving genetically modified (GM) and wild-type potato plants, researchers found no significant yield difference in tubers between grafted GM (TN) and control (NN) plants.
  • Although a few changes in gene expression and metabolite abundance were noted, the overall nutrient composition and quality of the potato tubers remained unaffected by the GM traits in the scion.
View Article and Find Full Text PDF

Grafting of commercial varieties onto transgenic stress-tolerant rootstocks is attractive approach, because fruit from the non-transgenic plant body does not contain foreign genes. RNA silencing can modulate gene expression and protect host plants from viruses and insects, and small RNAs (sRNAs), key molecules of RNA silencing, can move systemically. Here, to evaluate the safety of foods obtained from sRNA-recipient plant bodies, we investigated the effects of rootstock-derived sRNAs involved in mediating RNA-directed DNA methylation (RdDM) on non-transgenic scions.

View Article and Find Full Text PDF

Grafting of non-transgenic scion onto genetically modified (GM) rootstocks provides superior agronomic traits in the GM rootstock, and excellent fruits can be produced for consumption. In such grafted plants, the scion does not contain any foreign genes, but the fruit itself is likely to be influenced directly or indirectly by the foreign genes in the rootstock. Before market release of such fruit products, the effects of grafting onto GM rootstocks should be determined from the perspective of safety use.

View Article and Find Full Text PDF

Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 genes coding for small peptides were found to be up-regulated in response to salinity stress.

View Article and Find Full Text PDF

AtPEPTIDE RECEPTOR2 (AtPEPR2) is a member of leucine-rich repeat receptor-like kinase family and binds to a group of AtPROPEP gene-encoded endogenous peptides, AtPeps. Previously, we found that AtPEPR2 plays a moderate role in the AtPep1-mediated innate immunity responses in Arabidopsis leaf. In this study, we found that AtPEPR2 promoter has strong activity in the vascular tissues of the roots and the atpepr2 mutants showed a moderate but significantly shorter root phenotype.

View Article and Find Full Text PDF

Plant defense responses against invading organisms are initiated through the perception of molecules associated with attacking microbes and herbivores by pattern recognition receptors. In addition to elicitor molecules derived from attacking organisms, plants recognize host-derived molecules. These endogenous elicitors induce and amplify the defense responses against invading organisms both locally and systemically.

View Article and Find Full Text PDF

Only a handful of endogenous peptide defense signals have been isolated from plants. Herein, we report a novel peptide from soybean (Glycine max) leaves that is capable of alkalinizing the media of soybean suspension cells, a response that is generally associated with defense peptides. The peptide, DHPRGGNY, was synthesized and found to be active at 0.

View Article and Find Full Text PDF

A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades.

View Article and Find Full Text PDF

GmSubPep, a 12-amino acid peptide isolated from soybean leaves, induces the expression of genes in soybean suspension-cultured cells that encode proteins involved in defense against pathogens. The peptide is derived from an extracellular subtilisin-like protease (subtilase) and binds a putative cell-surface receptor that initiates a defense signaling cascade. Interaction of the peptide with its receptor results in alkalinization of soybean suspension cell media which can be utilized to analyze the kinetics of receptor binding.

View Article and Find Full Text PDF

Rapid Alkalinization Factor (RALF) is a 49-amino acid peptide initially isolated from tobacco leaves that is capable of arresting both root and pollen tube growth. With suspension cells, addition of RALF causes an elevation of the pH of the extracellular media, caused by the blockage of a proton pump. RALF associates with a putative receptor(s) on the surface of the plant cell, initiating a signal transduction pathway.

View Article and Find Full Text PDF

Among the arsenal of plant-derived compounds activated upon attack by herbivores and pathogens are small peptides that initiate and amplify defense responses. However, only a handful of plant signaling peptides have been reported. Here, we have isolated a 12-aa peptide from soybean (Glycine max) leaves that causes a pH increase of soybean suspension-cultured cell media within 10 min at low nanomolar concentrations, a response that is typical of other endogenous peptide elicitors and pathogen-derived elicitors.

View Article and Find Full Text PDF

Pep1 is a 23-amino acid peptide that enhances resistance to a root pathogen, Pythium irregulare. Pep1 and its homologs (Pep2 to Pep7) are endogenous amplifiers of innate immunity of Arabidopsis thaliana that induce the transcription of defense-related genes and bind to PEPR1, a plasma membrane leucine-rich repeat (LRR) receptor kinase. Here, we identify a plasma membrane LRR receptor kinase, designated PEPR2, that has 76% amino acid similarity to PEPR1, and we characterize its role in the perception of Pep peptides and defense responses.

View Article and Find Full Text PDF

A gene encoding a preprohydroxyproline-rich systemin, SnpreproHypSys, was identified from the leaves of black nightshade (Solanum nigrum), which is a member of a small gene family of at least three genes that have orthologs in tobacco (Nicotiana tabacum; NtpreproHypSys), tomato (Solanum lycopersicum; SlpreproHypSys), petunia (Petunia hybrida; PhpreproHypSys), potato (Solanum tuberosum; PhpreproHypSys), and sweet potato (Ipomoea batatas; IbpreproHypSys). SnpreproHypSys was induced by wounding and by treatment with methyl jasmonate. The encoded precursor protein contained a signal sequence and was posttranslationally modified to produce three hydroxyproline-rich glycopeptide signals (HypSys peptides).

View Article and Find Full Text PDF

AtPep1, a 23-amino acid peptide recently isolated from Arabidopsis leaves, induces the expression of the genes encoding defense proteins against pathogens. We investigated the structure-activity relationship of AtPep1 with its receptor, a 170 kDa leucine-rich repeat receptor kinase (AtPEPR1) by utilizing a suspension cell assay (the alkalinization assay). Binding of AtPep1 to AtPEPR1 on the cell surface is accompanied by an increase in the pH of Arabidopsis suspension cell media by 1 pH unit in 15 min with a half-maximal response of 0.

View Article and Find Full Text PDF

Plants cope with pathogens with distinct mechanisms. One example is a gene-for-gene system, in which plants recognize the pathogen molecule by specified protein(s), this being called the R factor. However, mechanisms of interaction between proteins from the host and the pathogen are not completely understood.

View Article and Find Full Text PDF

AtPep1 is a 23-aa endogenous peptide elicitor from Arabidopsis leaves that signals the activation of components of the innate immune response against pathogens. Here, we report the isolation of an AtPep1 receptor from the surface of Arabidopsis suspension-cultured cells. An (125)I-labeled AtPep1 analog interacted with suspension-cultured Arabidopsis with a K(d) of 0.

View Article and Find Full Text PDF

Wound-induced protein kinase (WIPK) is a tobacco (Nicotiana tabacum) mitogen-activated protein kinase known to play an essential role in defense against wounding and pathogens, although its downstream targets have yet to be clarified. This study identified a gene encoding a protein of 648 amino acids, which directly interacts with WIPK, designated as N. tabacum WIPK-interacting factor (NtWIF).

View Article and Find Full Text PDF

The hypersensitive response (HR) is one of the most critical defense systems in higher plants. In order to understand its molecular basis, we have screened tobacco genes that are transcriptionally activated during the early stage of the HR by the differential display method. Among six genes initially identified, one was found encoding a 57 kDa polypeptide with 497 amino acids not showing significant similarity to any reported proteins except for the AAA domain (ATPase associated with various cellular activities) spanning over 230 amino acids.

View Article and Find Full Text PDF

In the green alga, Chlamydomonas, chloroplast DNA is maternally transmitted to the offspring. We previously hypothesized that the underlying molecular mechanism involves specific methylation of maternal gamete DNA before mating, protecting against degradation. To obtain direct evidence for this, we focused on a DNA methyltransferase, DMT1, which was previously shown to be localized in chloroplasts.

View Article and Find Full Text PDF

Immediate early responsive genes were screened by the differential display method during the hypersensitive response upon tobacco mosaic virus infection of tobacco ( Nicotiana tabacum L.) plants carrying the N gene. Three hours after temperature shift from 30 degrees C to 20 degrees C, an increase in transcripts of a particular clone was observed.

View Article and Find Full Text PDF

In plant DNA, cytosines in symmetric CpG and CpNpG (N is A, T, or C) are thought to be methylated by DNA methyltransferases, MET1 and CMT3, respectively. Cytosines in asymmetric CpNpN are also methylated, and genetic analysis has suggested the responsible enzyme to be domains rearranged methyltransferase (DRM). We cloned a tobacco cDNA, encoding a novel protein consisting of 608 amino acids, that resembled DRMs found in maize and Arabidopsis and designated this as NtDRM1.

View Article and Find Full Text PDF

Screening immediate-early responding genes during the hypersensitive response (HR) against tobacco mosaic virus infection in tobacco (Nicotiana tabacum) plants, we identified a gene encoding ornithine decarboxylase. Subsequent analyses showed that other genes involved in polyamine biosynthesis were also up-regulated, resulting in the accumulation of polyamines in apoplasts of tobacco mosaic virus-infected leaves. Inhibitors of polyamine biosynthesis, alpha-difluoromethyl-ornithine, however, suppressed accumulation of polyamines, and the rate of HR was reduced.

View Article and Find Full Text PDF