Objective: Previous works have outlined the pivotal involvement of long intergenic non-coding RNA (lincRNA) in cancer progression, while the efficiency of LINC01234 in pancreatic cancer remained obscure. The purpose of this research is to unravel the regulatory mechanism of LINC01234 in pancreatic cancer via modulating microRNA (miR)-513a-3p and hexose 6-phosphate dehydrogenase (H6PD).
Methods: Pancreatic cancer cells were cultured and clinical tissue specimens were collected.
Currently, the oxygen evolution reaction (OER) is constrained by complex four-electron transport, thus it is difficult to understand the catalytic mechanism. In this work, the electronic properties and catalytic performance of MM/NC (M = Mn, Fe, Co, Ni, Cu and Zn, random combination in pairs) is studied by density functional theory, the calculated results show that the overpotential of FeCu/NC is 0.88 V, which is used as the optimal catalyst to further study the OER reaction mechanism.
View Article and Find Full Text PDFBackground: Tripartite Motif Containing 3 (TRIM3) has been reported to be downregulated in several malignancies. However, its prognostic significance in thyroid cancer remains unknown.
Objective: Here we aimed to investigate TRIM3's expression and its involvement in papillary thyroid carcinoma (PTC).
Background: miR-146b-5p has been reported to participate in premature ovarian failure (POF) in mice. However, its role in POF patients is unclear. We predicted that miR-146b-5p might interact with lncRNA DLEU1, a crucial player in ovarian cancer.
View Article and Find Full Text PDFLong noncoding RNA (LncRNA) zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) is highly expressed in a variety of tumors and is involved in promoting the malignant biological behaviors of cancer cells. However, the mechanism of ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC) remains to be explored. The ZFPM2-AS1 expression in HCC was measured by quantitative real-time PCR (qRT-PCR); cell counting kit-8, 5-bromo-2'-deoxyuridine (BrdU), and transwell assays were used to confirm the biological functions of ZFPM2-AS1 in regulating the malignant biological behaviors of HCC cells; the luciferase reporter gene assay was employed to detect whether ZFPM2-AS1 could bind to microRNA (miR)-576-3p; the regulatory relationship between ZFPM2-AS1 and miR-576-3p was probed by qRT-PCR; the effects of ZFPM2-AS1 and miR-576-3p on the expression of hypoxia-inducible factor 1α (HIF-1α) were detected by qRT-PCR and Western blot.
View Article and Find Full Text PDF