Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.
View Article and Find Full Text PDFThe clinical treatment of hospital-acquired persistent osteomyelitis caused by methicillin-resistant (MRSA) presents two major challenges: ineffective drug delivery into deep tissues and counteracting the rapid establishment of an immunosuppressive microenvironment. Indeed, MRSA can evade immunosurveillance and undermine both innate and adaptive immune responses. Herein, the engineered nanovesicles, functioning by combining sonodynamic therapy (SDT) with immune modulation, were constructed for the precise and noninvasive removal of MRSA in deep tissue and activation of the antimicrobial immune response using a newly engineered nanovesicle.
View Article and Find Full Text PDF