Publications by authors named "Yub Raj Neupane"

Chronic intestinal inflammation in patients with inflammatory bowel disease (IBD) can lead to the development of fibrosis and the formation of strictures. Endoscopic balloon dilation and surgical resection are currently the only available treatments for fibrotic strictures. However, both strategies are associated with potential complications and high rates of stricture recurrence, necessitating additional procedures and/or multiple surgical resections.

View Article and Find Full Text PDF

Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported.

View Article and Find Full Text PDF

Wound healing is a dynamic process that involves a series of molecular and cellular events aimed at replacing devitalized and missing cellular components and/or tissue layers. Recently, extracellular vesicles (EVs), naturally cell-secreted lipid membrane-bound vesicles laden with biological cargos including proteins, lipids, and nucleic acids, have drawn wide attention due to their ability to promote wound healing and tissue regeneration. However, current exploitation of EVs as therapeutic agents is limited by their low isolation yields and tedious isolation processes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), which are miniaturised carriers loaded with functional proteins, lipids, and nucleic acid material, are naturally secreted by cells and show intrinsic pharmacological effects in several conditions. As such, they have the potential to be used for the treatment of various human diseases. However, the low isolation yield and laborious purification process are obstacles to their translation for clinical use.

View Article and Find Full Text PDF

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.

View Article and Find Full Text PDF

In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes' membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed type of cancer and ranks second among cancer that leads to death. From becoming the foremost reason for global concern, this multifactorial disease is being treated by conventional chemotherapies that are associated with severe side effects, with chemoresistance being the ruling reason. Exemestane, an aromatase inhibitor that has been approved by the US FDA for the treatment of breast cancer in post-menopausal women, acts by inhibiting the aromatase enzyme, in turn, inhibiting the production of estrogen.

View Article and Find Full Text PDF

Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape.

View Article and Find Full Text PDF

Para-phenylenediamine (PPD) is one of the most used chemicals in oxidative hair dyes. However, its use has been associated with adverse effects on health, including contact dermatitis and other systemic toxicities. Novel PPD derivatives have been proposed as a safer replacement for PPD.

View Article and Find Full Text PDF

The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route.

View Article and Find Full Text PDF

Quercetin (QCT) is an effective antioxidant, antifibrotic and wound healing agent. Silver nanoparticles (AgNPs) are an effective antimicrobial, antifungal and wound healing agent and considered as gold standard for wound treatment especially diabetic and burn wounds. The present study aimed to investigate QCT loaded AgNPs in hydrogel matrices (QCT-AgNPs hydrogel) as synergistic treatment paradigms for diabetic wound.

View Article and Find Full Text PDF

Recently, bioinspired cell-derived nanovesicles (CDNs) have gained much interest in the field of nanomedicine due to the preservation of biomolecular structure characteristics derived from their parent cells, which impart CDNs with unique properties in terms of binding and uptake by target cells and intrinsic biological activities. Although the production of CDNs can be easily and reproducibly achieved with any kind of cell culture, application of CDNs for therapeutic purposes has been greatly hampered by their physical and chemical instability during long-term storage in aqueous dispersion. In the present study, we conceived a lyophilization approach that would preserve critical characteristics regarding stability (vesicles' size and protein content), structural integrity, and biological activity of CDNs for enabling long-term storage in freeze-dried form.

View Article and Find Full Text PDF

Cardiovascular disease remains the leading cause of morbidity and mortality globally. Extracellular vesicles (EVs), a group of heterogeneous nanosized cell-derived vesicles, have attracted great interest as liquid biopsy material for biomarker discovery in a variety of diseases including cardiovascular disease. Because EVs inherit bioactive components from parent cells and are able to transfer their contents to recipient cells, EVs hold great promise as potential cell-free therapeutics and drug delivery systems.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of death related to liver diseases worldwide. Despite this, there is no specific treatment approved for the disease till now, which could be due to the poor understanding of the pathophysiology of this disease. In the past few decades, several scientists have speculated the root cause of NAFLD to be dysbalance in the gut microbiome resulting in a susceptibility to the inflammatory cascade in the liver.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA), an autoimmune inflammatory disorder is currently incurable. Methotrexate and Teriflunomide are routinely prescribed drugs but their uses are limited due to severe hepatotoxicity. Hyaluronic acid (HYA) is a targeting ligand for CD44 receptors overexpressed on inflamed macrophages.

View Article and Find Full Text PDF

In the present study, midazolam (MDZ)-loaded chitosan nanoparticle formulation was investigated for enhanced transport to the brain through the intranasal (IN) route. These days, IN MDZ is very much in demand for treating life-threatening seizure emergencies; therefore, its nanoparticle formulation was formulated in the present work because it could substantially improve its brain targeting via the IN route. MDZ-loaded chitosan nanoparticles (MDZ-CSNPs) were formulated and optimized by the ionic gelation method and then evaluated for particle size, particle size distribution (PDI), drug loading (DL), encapsulation efficiency (EE), and in vitro release as well as in vitro permeation.

View Article and Find Full Text PDF

This research aims to coat Teriflunomide (TEF) loaded conventional nanoliposomes (CON-TEF-LIPO) with Chondroitin sulphate (CS) to produce CS-TEF-LIPO for the effective treatment of Rheumatoid arthritis (RA). Both CON-TEF-LIPO and CS-TEF-LIPO were produced, characterized and evaluated for their active targeting potential towards CD44 receptors. Cell cytotoxicity, cell viability and intracellular uptake study on differentiated U937 and MG-63 cells demonstrated the active targeting of CS-TEF-LIPO towards CD44 receptors.

View Article and Find Full Text PDF

Nanotherapeutics in cancer treatment are dominating global science and research, and have been recognized as the pioneering medical care regimen. Raloxifene (RLN) has been used for its anti-proliferative action on mammary tissue, however, it suffers from poor oral bioavailability. This investigation gives an account of the design and development of RLN-loaded nanostructured lipid carriers (RLN-NLCs) using a simple and scalable ultrasonication method for improved oral efficacy and limited offsite toxicity using Compritol 888 ATO as a solid lipid and Transcutol HP as a liquid lipid.

View Article and Find Full Text PDF

Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression.

View Article and Find Full Text PDF

The conventional treatment regimen for cancer with a single chemotherapeutic agent is far behind the clinical expectations due to the complexity of cancer biology and is also associated with poor Quality of Life (QOL) due to off-site toxicity and multidrug resistance. In recent years, nanopotentiated combination therapy has shown significant improvement in cancer treatment via a synergistic approach. However, being synthetic in nature, nanocarriers have been associated with the activation of the Complement (C) activation system resulting in serious hypersensitivity reactions known as CActivation Related Pseudoallergy (CARPA) effect once given via intravenous injection.

View Article and Find Full Text PDF

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one's immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer's, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes.

View Article and Find Full Text PDF

Various lipid nanovesicular systems have been developed with the aim to enhance the delivery of drugs via transdermal route. However, their clinical applications are often limited due to the barrier nature of skin and lack of flexibility. Herein, we have modified the conventional nanoliposomes (CLs) prepared by a thin-film hydration method by the addition of a polyol (glycerol) to form novel lipid nanovesicular structures termed 'POLYOLIPOSOMES' (PLs).

View Article and Find Full Text PDF

Posterior Segment Eye Diseases (PSED) are the major cause of visual impairment globally that directly affects the patients' quality of life, especially in the aging population. Vascular degenerative disorders of posterior eye are the vision threatening disorders, involving inflammation as one of the main pathological mechanisms. Use of current treatment regimens for PSED is significantly limited on account of unique environment of the eye that offers a major barrier to the delivery of efficient drug doses to the posterior segment.

View Article and Find Full Text PDF

Breast cancer is second most leading cause of death in all over the world and not only limited to the females. Tamoxifen has been considered as the gold line therapy for estrogen receptor positive breast cancer. However, this chemopreventive approach has been focused at individuals in high risk group and limits its clinical applications to moderate and/or lower risk groups.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) represent the leading cause of morbidity and mortality globally. The emerging role of extracellular vesicles (EVs) in intercellular communication has stimulated renewed interest in exploring the potential application of EVs as tools for diagnosis, prognosis, and therapy in CVD. The ubiquitous nature of EVs in biological fluids presents a technological advantage compared to current diagnostic tools by virtue of their notable stability.

View Article and Find Full Text PDF