Cortical parcellation delineates the cerebral cortex into distinct regions according to their distinctiveness in anatomy and/or function, which is a fundamental preprocess in brain cortex analysis and can influence the accuracy and specificity of subsequent neuroscientific research and clinical diagnosis. Conventional methods for cortical parcellation involve spherical mapping and multiple morphological feature computation, which are time-consuming and prone to error due to the spherical mapping process. Recent geometric learning approaches have attempted to automate this process by replacing the registration-based parcellation with deep learning-based methods.
View Article and Find Full Text PDF