Publications by authors named "Yuanzhu Mi"

A significant amount of water-in-oil (W/O) emulsion is generated during petroleum extraction. However, the current commercial demulsifiers are expensive to produce and requires high demulsification temperatures, leading to increased energy and economic consumption. To enhance the efficiency of demulsifiers and reduce the cost of demulsifying W/O emulsions, we have successfully developed a novel demulsifier named TCED through a straightforward two-step process.

View Article and Find Full Text PDF

Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions.

View Article and Find Full Text PDF

Stable emulsions can have numerous negative impacts on both the oil industry and the environment. This study focuses on the synthesis of two ionic liquids (via. PPBD and PPBH) with four hydrophobic branches and four ionic centers that can effectively treat oil-water emulsions at a low temperature of 40 °C.

View Article and Find Full Text PDF

Common commercial demulsifiers are typically made from ethylene oxide and propylene oxide. The production process is dangerous and complex, with poor adaptability and high cost. In this work, cotton modified with polyethylene polyamine was utilized as a demulsifier for the treatment of oily wastewater.

View Article and Find Full Text PDF

This work aims to prepare two new amphiphilic and interfacial active gemini ionic liquids to treat crude oil and investigates its demulsification mechanism. Tetraethylene glycol was pretreated with thionyl chloride and used as a linker to connect succinimide or phthalimide, and then reacted with dodecyl benzene sulphonic acid to obtain the corresponding amphiphilic and interfacial active gemini ionic liquid STA or PTA, respectively. H nuclear magnetic resonance spectroscopy (HNMR) and Fourier-transform infrared spectroscopy (FTIR) was used to determine the chemical structures.

View Article and Find Full Text PDF

In current work, a TB-EDA demulsifier for disposing oily wastewater was prepared using thorn fir bark (TB) as starting materials via a hydrothermal and solvent-free amination route. Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrometer (EDS), and Fourier transform infrared spectroscope (FT-IR) were employed to characterize the TB-EDA demulsifier. Three-phase contact angle (CA), interfacial activity, formation of interfacial film (FIF), coalescence time of droplets (CTD), dynamic interfacial tension (IFT), and Zeta potential were carried out to study the possible demulsification mechanism.

View Article and Find Full Text PDF

Oily wastewater produced in the process of oil extraction has a potential threat to the environment. In this paper, diethylenetriamine was used to modify rice straw powder (RSP) by a solvent-free strategy, and the obtained product (AM-RSP) was utilized to dispose oily wastewater. AM-RSP was characterized by Field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FT-IR) and BET.

View Article and Find Full Text PDF

In this work, nano carbon black was modified with polyethyleneimine (CB-PEI) under an ultrasonic field. The obtained product was used as a demulsifier to break oily wastewater. Morphology, structure, and chemical composition of CB-PEI were systematically analyzed.

View Article and Find Full Text PDF

Removing emulsified water from a water-in-crude oil (W/O) emulsion is critically required prior to downstream processing in the petroleum industry. In this work, environmentally friendly and amphipathic rice husk carbon (RHC) demulsifier was prepared by a simple carbonization process in a muffle furnace using rice husks as starting materials. RHC was characterized by field-emission scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrometer, powder X-ray diffraction, zeta potential and synchronal thermal analyzer.

View Article and Find Full Text PDF

In this work, a CNTs-NH demulsifier was prepared by grafting ethylenediamine on the surface of carbon nanotubes to break oily wastewater. The physicochemical and interfacial properties of CNTs-NH were characterized and analyzed. It showed that CNTs-NH had an eminent amphipathicity and high interfacial activity, which allows it to sharply migrates to the interface and effectively interacts with interfacial film by the combined action of π-π interaction and electrostatic attraction.

View Article and Find Full Text PDF

In current work, GO@SiO nanocomposite was prepared by coating nanoscale silica onto graphene oxide (GO). GO@SiO was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (IF-IR). Additionally, the demulsifying performance of GO@SiO was investigated by bottle test.

View Article and Find Full Text PDF