Lubrication of polymeric materials generally involves processes of atomic-scale chemical bond forming/breaking at the interface and mesoscale chain reorientation, disentanglement, and so forth. However, it is difficult to describe the important aspects of tribochemical reactions by conventional coarse-grained molecular dynamics (CGMD) simulations. Here, reactive CGMD simulations were conducted based on the ReaxFF force field to study the tribochemical interactions between polytetrafluoroethylene (PTFE) and iron.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
The tribochemistry and transfer film formation at the metal/polymer interface plays an essential role in surface protection, wear reduction, and lubrication. Although the topic has been studied for decades, challenges persist in clarifying the nanoscale mechanism and dynamic evolution of tribochemical reactions. To investigate the tribochemistry between iron and polytetrafluoroethylene (PTFE) in ambient and cryogenic environments, we have trained and expanded a ReaxFF reactive force field to describe iron-oxygen-water-PTFE systems (C/H/O/F/Fe).
View Article and Find Full Text PDFDiamond-like carbon (DLC) films are capable of achieving superlubricity at sliding interfaces by a rapid running-in process. However, fundamental mechanisms governing the friction evolution during this running-in processes remain elusive especially at the nanoscale, which hinders strategic tailoring of tribosystems for minimizing friction and wear. Here, it is revealed that the running-in governing superlubricity of DLC demonstrates two sub-stages in single-asperity nanocontacts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Graphite has been conventionally believed to exhibit an inferior lubricating performance with significantly larger friction coefficient and wear rate in a vacuum environment than in ambient air. Dangling bonds at the edge planes of graphite, accounting for the high friction in inert atmosphere are saturated by chemisorbed vapor molecules in air, which contributes to low surface adhesion and low friction. However, there is still a lack of direct experimental evidence whether basal planes of graphite excluding the negative effects of edges or dangling bonds shows intrinsic lubricity when sliding under ultrahigh vacuum (UHV) conditions.
View Article and Find Full Text PDFSimultaneously achieving low friction and fine electrical conductance of sliding electrical contacts is a crucial factor but a great challenge for designing high-performance microscale and nanoscale functional devices. Through atomistic simulations, we propose an effective design strategy to obtain both low friction and high conductivity in sliding electrical contacts. By constructing graphene(Gr)/MoS two-dimensional (2D) heterojunctions between sliding Cu surfaces, superlubricity can be achieved with a remarkably lowered sliding energy barrier as compared to that of the homogeneous MoS lubricated Cu contact.
View Article and Find Full Text PDFContacting interfaces with physical isolation and weak interactions usually act as barriers for electrical conduction. The electrical contact conductance across interfaces has long been correlated with the true contact area or the "contact quantity". Much of the physical understanding of the interfacial electrical contact quality was primarily based on Landauer's theory or Richardson formulation.
View Article and Find Full Text PDFInterlayer friction between the atomic planes of 2D materials and heterostructures is a promising probe of the physics in their interlayer couplings and superlubricity. However, it is still challenging to measure the interlayer friction between well-defined 2D layers. We propose an approach of thermally assisted mechanical exfoliation and transfer to fabricate various 2D flake-wrapped atomic force microscopy (AFM) tips and to directly measure the interlayer friction between 2D flakes in single-crystalline contact.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Nanoscale wear is one of the key factors hindering the performance and lifetime of micro- and nanosystems, such as the scanning tip wear in atomic force microscopy (AFM), the head-disk interface in magnetic storage system, and the moving components in micro- or nanoelectromechanical systems (MEMS/NEMS). Here, we propose to construct the graphene/graphene interfacial architecture to suppress the nanoscale wear. Molecular dynamics simulations show that the atomic roughness of the sliding surfaces with either stepped or amorphous structure can lead to strong inhomogeneity of the local contact pressure distribution.
View Article and Find Full Text PDFGraphene and other two-dimensional materials have been proved to be able to offer low friction. Here we assembled van der Waals heterostructures with graphene and molybdenum disulphide monolayers. The Raman spectrum together with a modified linear chain model indicate a two-orders-of-magnitude decrease in the interlayer lateral force constant, as compared with their homogeneous bilayers, indicating a possible routine to achieve superlubricity.
View Article and Find Full Text PDFSuperlubricity of graphite and graphene has aroused increasing interest in recent years. Yet how to obtain a long-lasting superlubricity between graphene layers, under high applied normal load in ambient atmosphere still remains a challenge but is highly desirable. Here, we report a direct measurement of sliding friction between graphene and graphene, and graphene and hexagonal boron nitride (h-BN) under high contact pressures by employing graphene-coated microsphere (GMS) probe prepared by metal-catalyst-free chemical vapour deposition.
View Article and Find Full Text PDFReactive molecular dynamics (ReaxFF) simulations are used to explore the atomic-level tribochemical mechanism of amorphous silica (a-SiO2) in a nanoscale, single-asperity contact in an aqueous environment. These sliding simulations are performed in both a phosphoric acid solution and in pure water under different normal pressures. The results show that tribochemical processes have profound consequences on tribological performance.
View Article and Find Full Text PDFThe atomic-scale friction of the fluorographene (FG)/MoS2 heterostructure is investigated using first-principles calculations. Due to the intrinsic lattice mismatch and formation of periodic Moiré patterns, the potential energy surface of the FG/MoS2 heterostructure is ultrasmooth and the interlayer shear strength is reduced by nearly two orders of magnitude, compared with both FG/FG and MoS2/MoS2 bilayers, entering the superlubricity regime. The size dependency of superlubricity is revealed as being based on the relationship between the emergence of Moiré patterns and the lattice mismatch ratio for heterostructures.
View Article and Find Full Text PDFAmorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces.
View Article and Find Full Text PDFNanotechnology
December 2013
We investigate the in-plane confinement effect of two graphene layers on the diffusion behaviour of water sub-monolayers using molecular dynamics simulations. An unexpected fast diffusion state with giant anisotropy is observed when the two confining graphene walls have certain shifts applied to their relative positions. The phenomenon is mainly attributed to the smooth one-dimensional potential channels produced by the composition effect of the potential energy landscapes of the two graphene walls, and the concerted motion of water molecules due to hydrogen bonding.
View Article and Find Full Text PDFWe report the thickness dependence of intrinsic friction in few-layer graphenes, adopting molecular dynamics simulations. The friction force drops dramatically with decreasing number of layers and finally approaches zero with two or three layers. The results, which are robust over a wide range of temperature, shear velocity, and pressure are quantitatively explained by a theoretical model with regard to lateral stiffness, slip length, and maximum lateral force, which could provide a new conceptual framework for understanding stick-slip friction.
View Article and Find Full Text PDFDroplet spreading behaviors on lubricant-patterned substrates are investigated by using molecular dynamics simulations to explore application potentials in magnetic storage drive systems. Microscopic spreading processes are studied by both potential fields of lubricant-patterned substrates and single molecule movements in lubricant droplets. The potential fields indicate that the wall molecules patterned on the substrates attract the mobile ones in the lubricant droplets.
View Article and Find Full Text PDF