Publications by authors named "Yuanzhi Tang"

Millions of tons of coal fly ashes (CFAs) are produced annually during coal combustion in the U.S., which are commonly beneficially used in the concrete industry or disposed of in ash ponds.

View Article and Find Full Text PDF
Article Synopsis
  • - This study introduces a new method for recycling retired electric vehicle lithium-ion batteries that combines mechanochemistry and hydrogen reduction processes, significantly lowering the required temperature to 450 °C.
  • - Key factors for success in this process include particle refinement and the creation of defects in the materials, which enhance the effectiveness of the hydrogen in breaking down the cathode components.
  • - Life cycle assessments indicate that this approach can reduce CO2 emissions by 4.42 kg for every kilogram of recycled batteries, supporting sustainable practices and reducing the environmental impact of metal extraction.
View Article and Find Full Text PDF

Solid electrolytes are one of the key challenges that hinder the commercialization of all-solid-state batteries. Most efforts have been made to advance the development of solid electrolytes as separators, while the development of catholytes, particularly redox-active catholytes, has been less extensively studied. The high loading of catholytes in composite cathodes, while facilitating ionic conduction, drastically decreases the energy density of the battery.

View Article and Find Full Text PDF

The advancements in high-tech products and pursuit of renewable energy demand a massive and continuously growing supply of rare earth elements (REE). However, REE production from mining is heavily restricted by technoeconomic limitations and global geopolitical tensions. Municipal solid waste incineration ash (MSWIA) has been recently recognized as a potential alternative for REE recovery.

View Article and Find Full Text PDF

Global efforts to build a net-zero economy and the irreplaceable roles of rare-earth elements (REEs) in low-carbon technologies urge the understanding of REE occurrence in natural deposits, discovery of alternative REE resources, and development of green extraction technologies. Advancement in these directions requires comprehensive knowledge on geochemical behaviors of REEs in the presence of naturally prevalent organic ligands, yet much remains unknown about organic ligand-mediated REE mobilization/fractionation and related mechanisms. Herein, we investigated REE mobilization from representative host minerals induced by three representative organic ligands: oxalate, citrate, and the siderophore desferrioxamine B (DFOB).

View Article and Find Full Text PDF

The oxidation of dissolved Mn(aq) plays a critical role in driving manganese cycles and regulating the fate of essential elements and contaminants in environmental systems. Based on sluggish oxidation rate, abiotic processes have been considered less effective oxidation pathway for manganese oxidation in environmental systems. Interestingly, a recent study (Jung et al.

View Article and Find Full Text PDF

Due to the growing demands of rare earth elements (REEs) and the vulnerability of REEs to potential supply disruption, there have been increasing interests in recovering REEs from waste streams such as coal fly ash (CFA). Meanwhile, CFA as a large industrial waste stream in the United States (U.S.

View Article and Find Full Text PDF

Oxidation of Mn(II) or As(III) by molecular oxygen is slow at pH < 9, while they can be catalytically oxidized in the presence of oxide minerals and then removed from contaminated water. However, the reaction mechanisms on simultaneous oxidation of Mn(II) and As(III) on oxide mineral surface and their accompanied removal efficiency remain unclear. This study compared Mn(II) oxidation on four common metal oxides (γ-AlO, CuO, α-FeO and ZnO) and investigated the simultaneous oxidation and removal of Mn(II) and As(III) through batch experiments and spectroscopic analyses.

View Article and Find Full Text PDF

White adipose tissue wasting plays a critical role in the development and progression of cancer cachexia. However, the mechanism behind the loss of adipose tissue remains ill-defined. In this study, we found that cancer cell-derived exosomes highly expressed miR-425-3p.

View Article and Find Full Text PDF

Phosphorus (P) is an essential macronutrient for all living organisms. Despite a diversity of P compounds in the environment, orthophosphate is the most bioavailable form of P. Remineralization of complex P molecules (e.

View Article and Find Full Text PDF

The thermal insulation performance of exhaust pipes coated with various materials (basalt and glass fiber materials) under different braiding forms (sleeve, winding and felt types) and the effects on the emission characteristics of diesel engines were experimentally studied through engine bench tests. The results indicated that the thermal insulation performance of basalt fiber was higher than that of glass fiber, and more notably advantageous at the early stage of the diesel engine idle cold phase. The average temperature drop during the first 600 s of the basalt felt (BF) pipe was 2.

View Article and Find Full Text PDF

Mixing transition metal cations in nearly equiatomic proportions in layered oxide cathode materials is a new strategy for improving the performances of Na-ion batteries. The mixing of cations not only offers entropic stabilization of the crystal structure but also benefits the diffusion of Na ions with tuned diffusion activation energy barriers. In light of this strategy, a high-rate Na(TiMnCoNiRu)O cathode was designed, synthesized, and investigated, combining graph-based deep learning calculations and complementary experimental characterizations.

View Article and Find Full Text PDF

Hydrothermal treatment (HT) is a promising technology to enhance anaerobic digestion (AD) of municipal sludge. However, the capacity of pre- and inter-stage HT (i.e.

View Article and Find Full Text PDF

Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.

View Article and Find Full Text PDF

Sulfur (S) is an abundant and redox-active element in urban wastewater systems and plays a critical role in both the wastewater and sludge treatment processes. This study comparatively characterized the transformation of S and several closely associated metals (Cu, Zn, and Fe) during pyrolysis (250 to 750 °C) and hydrothermal carbonization (HTC, 150 to 275 °C) treatments of sewage sludge. S, Fe, Zn, and Cu K-edge X-ray absorption spectroscopy was applied to quantitatively evaluate the fate of S and contribution of different S species in regulating metal speciation.

View Article and Find Full Text PDF

Anaerobic digestion (AD) with hydrothermal (HT) pretreatment is an emerging technology for enhanced resource recovery from sewage sludge. This study investigates the speciation of Fe, P, and S during sequential HT-AD treatment of sewage sludge using sequential chemical extraction, X-ray diffraction, and X-ray absorption spectroscopy. Results suggest strong correlations between Fe and P species as well as Fe and S species, affecting the solubility and bioavailability of each other.

View Article and Find Full Text PDF

Mn oxides are among the most ubiquitous minerals on Earth and play critical roles in numerous elemental cycles in biotic/abiotic loops as the key redox center. Yet, it has long puzzled geochemists why the laboratory synthesis of todorokite, a tunnel-structured Mn oxide, is extremely difficult while it is the dominant form over other tunneled phases in low-temperature natural environments. This study employs a novel electrochemical method to mimic the cyclic redox reactions occurring over long geological time scales in an accelerated manner.

View Article and Find Full Text PDF

Global expectation for sustainability has prompted the transition of practices in wastewater treatment plants toward not only waste management but also energy and nutrient recovery. It has been shown that low-temperature hydrotherm (HT) treatment can enhance downstream biogas production via anaerobic digestion (AD). Yet, because the application of combined HT and AD is still at an early stage, a systematic understanding of the dynamic speciation evolution of important elements is still lacking.

View Article and Find Full Text PDF

The geochemical behaviors of phosphate-containing species at mineral-water interfaces are of fundamental importance for controlling phosphorus mobility, fate, and bioavailability. This study investigates the sorption and hydrolysis of polyphosphate (a group of important long-chained phosphate molecules) on aluminum oxides in the presence of divalent metal cations (Ca, Cu, Mg, Mn, and Zn) at pH 6-8. γ-AlO with three particle sizes (5, 35, and 70 nm) was used as an analogue of natural aluminum oxides to investigate the particle size effect.

View Article and Find Full Text PDF

The recovery and reuse of phosphorus (P) from wastewater treatment process is a critical and viable target for sustainable P utilization. This study explores a novel approach of integrating ultrafine mineral particles into hydrogel matrixes for enhancing the capacity of phosphate adsorption. Dolomite-alginate (DA) hydrogel beads were prepared by integrating ball-milled, ultrafine dolomite powders into calcium cross-linked alginate hydrogel matrix.

View Article and Find Full Text PDF

Polyphosphates and phosphomonoesters are dominant components of marine dissolved organic phosphorus (DOP). Collectively, DOP represents an important nutritional phosphorus (P) source for phytoplankton growth in the ocean, but the contribution of specific DOP sources to microbial community P demand is not fully understood. In a prior study, it was reported that inorganic polyphosphate was not bioavailable to the model diatoms Thalassiosira weissflogii and Thalassiosira pseudonana.

View Article and Find Full Text PDF

While sodium-ion batteries (SIBs) hold great promise for large-scale electric energy storage and low speed electric vehicles, the poor capacity retention of the cathode is one of the bottlenecks in the development of SIBs. Following a strategy of using lithium doping in the transition-metal layer to stabilize the desodiated structure, we have designed and successfully synthesized a novel layered oxide cathode P2-NaLiFeMnO, which demonstrated a high  capacity of 190 mAh g and a remarkably high capacity retention of ∼87% after 80 cycles within a wide voltage range of 1.5-4.

View Article and Find Full Text PDF

In recent years, recovery of rare earth elements (REEs) from coal fly ashes (CFAs) has been considered as a promising resource recovery option. Yet, quantitative information on REE speciation in CFAs and its correlation with REE extractability are not well established. This study systematically investigated the REE speciation-extractability relationship in four representative CFA samples by employing multiple analytical and spectroscopic techniques across the micro to bulk scale and in combination with thermodynamic calculations.

View Article and Find Full Text PDF

Associations of organic carbon (OC) with iron (Fe) oxide minerals play an important role in regulating the stability of OC in soil environments. Knowledge about the fate and stability of Fe-OC complexes is impaired by the heterogeneity of OC. Additional biogeochemical variables in soil environments, such as redox conditions and microbes, further increase complexity in understanding the stability of mineral-associated soil OC.

View Article and Find Full Text PDF

The kinetics and mechanism of thiol oxidation by Mn oxides undergoing dynamic structural transformation under environmentally relevant conditions remain poorly understood. In this study, thiol/disulfide pair concentrations were simultaneously determined in situ using voltammetric microelectrodes during the interaction of four common thiols (cysteine, homocysteine, cysteamine, and glutathione) with fresh and aged δ-MnO at pH 7.0.

View Article and Find Full Text PDF