Publications by authors named "Yuanzhi Shi"

In intensive care units, acute lung injury (ALI) is a syndrome that is frequently encountered. It is associated with a high rate of morbidity and mortality. Despite the extensive research conducted by the medical community on its treatment, no specific effective drugs have been identified.

View Article and Find Full Text PDF

ALI(acute lung injury) is a severe respiratory dysfunction caused by various intrapulmonary and extrapulmonary factors. It is primarily characterized by oxidative stress and affects the integrity of the pulmonary barrier. In severe cases, ALI can progress to ARDS(acute respiratory distress syndrome), a condition that poses a serious threat to the lives of affected patients.

View Article and Find Full Text PDF

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control.

View Article and Find Full Text PDF

Understanding soil organic carbon (SOC), the largest carbon (C) pool of a terrestrial ecosystem, is essential for mitigating climate change. Currently, the spatial patterns and drivers of SOC in the plantations of tea, a perennial leaf crop, remain unclear. Therefore, the present study surveyed SOC across the main tea-producing areas of China, which is the largest tea producer in the world.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) are two important nutrient elements that limit the growth of plants and microorganisms. The effect of the N supply on soil P cycling and its mechanism remain poorly known. Here, we characterized the effects of different N application rates on soil P availability, the abundances of P-cycling functional genes, and microbial communities involved in P-cycling following the application of N for 13 years in a tea plantation.

View Article and Find Full Text PDF

Paddy fields are complex ecosystems that both emit CH and absorb CO, which plays an important role in the global water-carbon cycle and carbon budget. In this study, the CH fluxes and CO fluxes of double-cropping direct-seeded rice fields in 2020 in the Poyang Lake Plain were obtained using the eddy covariance method, and the variation characteristics, accumulation in the whole growth period, and comprehensive greenhouse effects of two greenhouse gases were quantitatively revealed. The results showed that, the double-cropping direct-seeded rice field in Poyang Lake Plain was the source of CH emission, and the emission during the whole growth period was 52.

View Article and Find Full Text PDF

Acidic tea (Camellia sinensis) plantation soil usually suffers from magnesium (Mg) deficiency, and as such, application of fertilizer containing Mg can substantially increase tea quality by enhancing the accumulation of nitrogen (N)-containing chemicals such as amino acids in young tea shoots. However, the molecular mechanisms underlying the promoting effects of Mg on N assimilation in tea plants remain unclear. Here, both hydroponic and field experiments were conducted to analyze N, Mg, metabolite contents, and gene expression patterns in tea plants.

View Article and Find Full Text PDF

The response of soil denitrification to nitrogen (N) addition in the acidic and perennial agriculture systems and its underlying mechanisms remain poorly understood. Therefore, a long-term (12 years) field trial was conducted to explore the effects of different N application rates on the soil denitrification potential (DP), functional genes, and denitrifying microbial communities of a tea plantation. The study found that N application to the soil significantly increased the DP and the absolute abundance of denitrifying genes, such as narG, nirK, norB, and nosZ.

View Article and Find Full Text PDF

To provide guidance for the safe use of organic fertilizers and improve soil quality and tea safety, it is necessary to conduct systematic analyses of the heavy metal content of organic fertilizers applied in the main tea producing areas of China. In this study, we analyzed the heavy metal contents in organic fertilizer samples collected from 2017 to 2019. The risks of collected organic fertilizers from different areas and sources were calculated.

View Article and Find Full Text PDF

Soil organic carbon (SOC) is an important C pool of the global ecosystem and is affected by various agricultural practices including fertilization. Excessive nitrogen (N) application is an important field management measure in tea plantation systems. However, the mechanism underlying the impact of N fertilization on SOC, especially the microscopic mechanism remain unclear.

View Article and Find Full Text PDF

Agricultural management is essential to enhance soil ecosystem service function through optimizing soil physical conditions and improving nutrient supply, which is predominantly regulated by soil microorganisms. Several studies have focused on soil biodiversity and function in tea plantation systems. However, the effects of different agriculture managements on soil fertility and microbes remain poorly characterized, especially for what concerns perennial agroecosystems.

View Article and Find Full Text PDF

Over 30% of the Chinese tea plantation is supplied with excess fertilizer, especially nitrogen (N) fertilizer. Whether or not foliar N application on tea plants at the dormancy stage could improve the quality of spring tea and be a complementary strategy to reduce soil fertilization level remains unclear. In this study, the effects of foliar N application on tea plants were investigated by testing the types of fertilizers and their application times, and by applying foliar N under a reduced soil fertilization level using field and N-labeling pot experiments.

View Article and Find Full Text PDF

Nitrogen (N) fertilizer is widely used in agricultural ecosystems and influences N transformation processes in the soil such as nitrification. However, whether nitrification is primarily dominated by ammonia-oxidizing bacteria (AOB) or archaea (AOA) under heavy N application is still under debate. In the present work, the effect of long-term (12 years) N fertilization on soil nitrification and the key influencing factors were investigated in acidic tea plantation soil that received four different rates of N application (0, 119, 285, and 569 kg N ha yr).

View Article and Find Full Text PDF

Physiological effects of ammonium (NH) and nitrate (NO) on tea have confirmed that tea plants prefer NH as the dominant nitrogen (N) source. To investigate the possible explanations for this preference, studies of NH and NO- assimilation using hydroponically grown tea plants were conducted. During the time course of NH and NO assimilation, the absorption of N from NH was more rapid than that from NO, as there was a more efficient expression pattern of NH transporters compared with that of NO transporters.

View Article and Find Full Text PDF

Background: Greater proportions of purple tea buds and leaves usually appear in the summer, which seriously affects the color and taste quality of green tea products, yet the metabolism of purple tea shoots in summer remains unclear. Here, the metabolomic profiles and gene expression of related flavonoid metabolic pathways in the purple and normal green shoots of 'Longjing 43', and the quality of green tea made with these two phenotypes, were analyzed and compared.

Results: Differential metabolites identified using high-performance liquid chromatography-Orbitrap/mass spectrometry indicated that anthocyanin biosynthesis in purple leaves was enriched, with higher levels of anthocyanidins (delphinidin-hexose-coumaroyl showed the greatest increase), proanthocyanidins (oligomers of catechins) and kaempferol glycoside.

View Article and Find Full Text PDF

Background: Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time.

View Article and Find Full Text PDF

Non-fermented teas, which are widely consumed in China, Japan, Korea, and elsewhere, have refreshing flavors and valuable health benefits. Various types of non-fermented teas look and taste similar and have no obvious differences in appearance, making their classification challenging. To date, there are very few reports about characterization and discrimination of different types of non-fermented teas.

View Article and Find Full Text PDF

Transcriptome profiling of roots indicated that genes involved in cell wall modification, cytoskeleton, H exchange and K influx played important roles in tea root growth under Al addition. Tea (Camellia sinensis) is considered as an Al accumulator species. It can accumulate a high concentration of Al in mature leaves without any symptom of toxicity, even improve roots' growth and nutrient uptake.

View Article and Find Full Text PDF

Widely distributed in tea plants, the flavonoid flavonol and its glycosylated derivatives have important roles in determining tea quality. However, the biosynthesis and accumulation of these compounds has not been fully studied, especially in response to nitrogen (N) supply. In the present study, 'Longjing 43' potted tea seedlings were subjected to N deficiency (0g/pot), normal N (4g/pot) or excess N (16g/pot).

View Article and Find Full Text PDF

Orthogonal tests were performed to assess the effect of design parameters on hydraulic and treatment performances of constructed wetlands. The results showed that water depth, layout of in- and outlet, flow rate, and aspect ratio mainly affected hydraulic performance, and water depth, plant spacing, and layout of in- and outlet mainly affected treatment performance. Optimal integrated performance was achieved with combination of 20-30 cm water depth, five evenly distributed inlets and one middle outlet, a flow rate of 0.

View Article and Find Full Text PDF

Rationale: Deliberate and fraudulent origin mislabeling of Chinese green tea motivated by large price differences often brings significant food safety risks and damages consumer trust. Currently, there is no reliable method to verify the origin of green tea produced in China. Stable isotope and multi-element analyses combined with statistical models are widely acknowledged as useful traceability techniques for many agro-products, and could be developed to confirm the geographical origin of Chinese green tea and, more importantly, combat illegal green tea mislabeling and fraud.

View Article and Find Full Text PDF

Circulating tumor cell (CTC)-enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)-patterned microfluidic chip modified with multivalent aptamer-functionalized nanospheres (AP-Octopus-Chip) to enhance capture efficiency. The multivalent aptamer-antigen binding efficiency improves 100-fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer-modified chip.

View Article and Find Full Text PDF

To uncover mechanism of highly weakened carbon metabolism in chlorotic tea ( ) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar "Huangjinya". A total of 2110 proteins were identified in "Huangjinya", and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome.

View Article and Find Full Text PDF

Tea flowering in late autumn competes for a large amount of nitrogen and carbohydrates, potentially undermines the storage of these resources in vegetative organs, and negatively influences the subsequent spring tea yield and quality. The mechanism underlying the re-allocation N and carbohydrate from source leaf to flower in tea plant has not been clearly understood. In this study, N allocation, changes in metabolomics, and gene expression in flower buds, flowers, and adjacent leaves were characterized.

View Article and Find Full Text PDF

The qualities of tea () are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontv1ulko702a1d2rbodkojjrvrpkpjoct): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once