Publications by authors named "Yuanzheng Peng"

Islet transplantation to treat the late stage of type 1 diabetic patient (T1DM) has recently made inspiring success in clinical trials. However, most patients experience a decline in islet graft function in one to three years due to immune rejection. Although the mechanisms of immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer cells (NKs), B cells, and T cells, that mediate immune rejection have been investigated, the overall characteristics of immune infiltrates in islet allografts and syngeneic grafts remain unclear.

View Article and Find Full Text PDF

Background: Type 1 diabetes (T1DM) is a chronic autoimmune disease characterized by T-cell-mediated destruction of insulin-producing beta cells. Evidence shows that patients with T1DM and mice used in specific diabetic models both exhibit changes in their intestinal microbiota and dysregulated microbiota contributes to the pathogenesis of T1DM. Islet transplantation (Tx) is poised to play an important role in the treatment of T1DM.

View Article and Find Full Text PDF

Pancreatic islet transplantation is a well-established therapeutic treatment for type 1 diabetes. The kidney capsule is the most commonly used site for islet transplantation in rodent models. However, the tight kidney capsule limits the transplantation of sufficient islets in large animals and humans.

View Article and Find Full Text PDF

Controversial results regarding the associations between aldose reductase (AR) genetic polymorphisms and diabetic retinopathy (DR) have been reported for many years. The present meta-analysis was performed to clarify the effects of the AR gene C(-106)T polymorphism on DR risk. The PubMed, Web of Sciences, Cochrane library, EMBASE, Chinese National Knowledge Infrastructure, and Wan Fang databases were extensively searched in Chinese to select relevant studies with an updated date of April 25, 2018.

View Article and Find Full Text PDF

RNA splicing is a critical mechanism by which to modify transcriptome, and its dysregulation is the underlying cause of many human diseases. It remains challenging, however, to genetically modulate a splicing event in its native context. Here, we demonstrate that a CRISPR-guided cytidine deaminase (i.

View Article and Find Full Text PDF

Increasing evidence indicates that alternative processing of mRNA, including alternative splicing, 3' alternative polyadenylation, and regulation of mRNA stability/translation, represents a major mechanism contributing to protein diversification. For example, in alternative polyadenylation, the 3' end of the immunoglobulin heavy chain mRNA is processed during B cell differentiation, and this processing involves RNA-binding proteins. hnRNPLL (heterogeneous nuclear ribonucleoprotein L-like protein) is an RNA-binding protein expressed in terminally differentiated lymphocytes, such as memory T cells and plasma cells.

View Article and Find Full Text PDF

Background: T cell-mediated immune rejection is a key barrier to islet transplantation. Preliminary studies have shown that arsenic trioxide (As2O3) can inhibit T cell responses and prolong heart allograft survival. Here, we sought to investigate the possibility of using As2O3 to prolong islet allograft survival in an acute rejection model of Balb/c to C57B/6 mice.

View Article and Find Full Text PDF

Islet transplantation is a therapeutic option for type 1 diabetes, but its long-term success is limited by islet allograft survival. Many factors imperil islet survival, especially the adverse effects and toxicity due to clinical immunosuppressants. Compound (Cpd) K is a synthesized analog of highly unsaturated fatty acids from Isatis tinctoria L.

View Article and Find Full Text PDF

Background: Memory T cells are a significant barrier to the induction of transplant tolerance. Our previous study demonstrated that multiple applications of anti-CD44 monoclonal antibody (mAb) could significantly inhibit CD4(+) memory T cells from mediating rejection of cardiac allografts. Now, we sought to explore the effect and mechanism of anti-CD44 mAb on the rejection of islet allografts and xenografts mediated by CD4(+) memory T cells.

View Article and Find Full Text PDF

Donor-reactive memory T cells mediated accelerated rejection is known as a barrier to the survival of transplanted organs. We investigated the combination of different monoclonal antibodies (mAbs) and donor-specific transfusion (DST) in memory T cells-based adoptive mice model. In the presence of donor-reactive memory T cells, the mean survival time (MST) of grafts in the anti-CD40L/LFA-1/DST group was 49.

View Article and Find Full Text PDF

Background: Alloreactive memory T cells are a major obstacle to transplantation acceptance due to their capacity for accelerated rejection.

Methods: C57BL/6 mice that had rejected BALB/c skin grafts 4 weeks earlier were used as recipients. The recipient mice were treated with anti-CD154/LFA-1 with or without anti-CD70 during the primary skin transplantation and anti-CD154/LFA-1 or not during the secondary transplantation of BALB/c heart.

View Article and Find Full Text PDF

Background: Donor-reactive memory T cells are known to accelerate allograft rejection; in our previous study, we reported that combined monoclonal antibodies (mAbs) could prolong islet allograft survival in alloantigen-primed mice. In this study, we examine the effects of donor-reactive memory T cells on the xenograft survival and methods to prolong the islet graft survival.

Methods: To collect donor-reactive T cells, we performed full-thickness rat skin xenografting on BALB/c mice and isolated the T cells from the mice after 6-8 weeks.

View Article and Find Full Text PDF

CD38 has multiple roles in biology, including T lymphocyte signaling, neutrophil migration, neurotransmission, cell proliferation, apoptosis, and bone remodeling. To study the transcriptional control of the CD38 gene, we cloned a putative 1.8 kb promoter fragment from a rabbit genomic DNA library.

View Article and Find Full Text PDF