Microwave Staring Correlated Imaging (MSCI) is a newly proposed computational high-resolution imaging technique. The imaging performance of MSCI with the existence of modeling errors depends on the properties of the imaging matrix and the relative perturbation error resulted from existing errors. In conventional transient-radiation-fields-based MSCI, which is commonly accomplished by utilizing random frequency-hopping (FH) waveforms, the multiple transmitters should be controlled individually and simultaneously.
View Article and Find Full Text PDFIn two dimensional cross-range multiple-input multiple-output radar imaging for aerial targets, due to the non-cooperative movement of the targets, the estimated imaging plane parameters, namely the center and the posture angles of the imaging plane, may have deviations from true values, which defocus the final image. This problem is called imaging plane mismatch in this paper. Focusing on this problem, firstly the deviations of spatial spectrum fulfilling region caused by imaging plane mismatch is analyzed, as well as the errors of the corresponding spatial spectral values.
View Article and Find Full Text PDFMicrowave staring correlated imaging (MSCI), with the technical capability of high- resolution imaging on relatively stationary targets, is a promising approach for remote sensing. For the purpose of continuous observation of a fixed key area, a tethered floating aerostat is often used as the carrying platform for MSCI radar system; however, its non-cooperative random motion of the platform caused by winds and its unbalance will result in blurred imaging, and even in imaging failure. This paper presents a method that takes into account the instabilities of the platform, combined with an adaptive variable suspension (AVS) and a position and orientation system (POS), which can automatically control the antenna beam orientation to the target area and measure dynamically the position and attitude of the stochastic radiation radar array, respectively.
View Article and Find Full Text PDFMicrowave staring correlated imaging (MSCI) can realize super resolution imaging without the limit of relative motion with the target. However, gain⁻phase errors generally exist in the multi-transmitter array, which results in imaging model mismatch and degrades the imaging performance considerably. In order to solve the problem of MSCI with gain⁻phase error in a large scene, a method of MSCI with strip-mode self-calibration of gain⁻phase errors is proposed.
View Article and Find Full Text PDFSensors (Basel)
February 2019
The stochastic characteristic of the radiation field of a mono-static microwave staring correlated imaging (MSCI) radar degenerates with the increase of the imaging distance, which results in degradation of the image quality. To address this issue, a novel MSCI method based on bi-static radar is proposed from two perspectives: site-deploying and waveform design. On the one hand, a new bi-static MSCI site-deploying scheme is proposed which adopts two transmitting stations with their azimuth angles relative to the center of the imaging region differing by 90 degrees.
View Article and Find Full Text PDF