β-Fluoromethyl (CHF, CHF, and CF)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones.
View Article and Find Full Text PDFUltrafast ultrasound Doppler imaging facilitates the assessment of cerebral hemodynamics with high spatio-temporal resolution. However, the significant acoustic impedance mismatch between the skull and soft tissue results in phase aberrations, which can compromise the quality of transcranial imaging and introduce biases in velocity and direction quantification of blood flow. This paper proposed an aberration correction method that combines deep learning-based skull sound speed modelling with ray theory to realize transcranial plane-wave imaging and ultrafast Doppler imaging.
View Article and Find Full Text PDFBenzene ring contractions are useful yet rare reactions that offer a convenient synthetic route to various valuable chemicals. However, the traditional methods of benzene contraction rely on noble-metal catalysts under extreme conditions with poor efficiency and uncontrollable selectivity. Mild-condition contractions of the benzene ring are rarely reported.
View Article and Find Full Text PDFBiocatalysis has emerged as a valuable and reliable tool for industrial and academic societies, particularly in fields related to bioredox reactions. The cost of cofactors, especially those needed to be replenished at stoichiometric amounts or more, is the chief economic concern for bioredox reactions. In this study, a readily accessible, inexpensive, and bench-stable Hantzsch ester is verified as the viable and efficient NAD(P)H mimic by four enzymatic redox transformations, including two non-heme diiron N-oxygenases and two flavin-dependent reductases.
View Article and Find Full Text PDFBase excision (BE) is an important yet hard-to-control biological event. Unnatural base pairs are powerful tools to revolutionize biological studies in various areas. In this paper, we report a visible-light-induced method to construct site-specific unnatural BE and show the influence of its regulation on transcription and translation levels.
View Article and Find Full Text PDFHerein, we employed lead-free CsCuI perovskite films as the functional layers to construct Al/CsCuI/ITO memory devices and systematically investigated the impact on the corresponding resistive switching (RS) performance via adding different amounts of hydroiodic acid (HI) in CsCuI precursor solution. The results demonstrated that the crystallinity and morphology of the CsCuI films can be improved and the resistive switching performance can be modulated by adding an appropriate amount of HI. The obtained CsCuI films by adding 5 μL HI exhibit the fewest lattice defects and flattest surface (RMS = 13.
View Article and Find Full Text PDFThe α-type ADP-ribosylated peptides represent a class of important molecular tools in the field of protein ADP-ribosylation, however, they are difficult to access because of their inherent complicated structures and the lack of effective synthetic tools. In this paper, we present a biomimetic α-selective ribosylation reaction to synthesize a key intermediate, α-ADP-ribosyl azide, directly from native β-nicotinamide adenine dinucleotide in a clean ionic liquid system. This reaction in tandem with click chemistry then offers a two-step modular synthesis of α-ADP-ribosylated peptides.
View Article and Find Full Text PDFA novel ligand (6) for copper-catalyzed azide-alkyne cycloaddition (CuAAC) in bioconjugation has been developed. Both in vitro and in vivo experiments indicate that 6 is more efficient and less cytotoxic than the canonical CuAAC ligands. Besides, 6 is easily accessible and can be prepared at gram scale.
View Article and Find Full Text PDFRecently, several types of lead halide perovskites have been demonstrated as active layers in resistive switching memory or artificial synaptic devices for neuromorphic computing applications. However, the thermal instability and toxicity of lead halide perovskites severely restricted their further practical applications. Herein, the environmentally friendly and uniform CsCuI perovskite films are introduced to act as the active layer in the Ag/CsCuI/ITO memristor.
View Article and Find Full Text PDFThe heterocycle 1,2,3-triazole is among the most versatile chemical scaffolds and has been widely used in diverse fields. However, how nature creates this nitrogen-rich ring system remains unknown. Here, we report the biosynthetic route to the triazole-bearing antimetabolite 8-azaguanine.
View Article and Find Full Text PDFAzoxy bond is an important chemical bond and plays a crucial role in high energy density materials. However, the biosynthetic mechanism of azoxy bond remains enigmatic. Here we report that the azoxy bond biosynthesis of azoxymycins is an enzymatic and non-enzymatic coupling cascade reaction.
View Article and Find Full Text PDFBenefiting from their unique properties, the development of structurally novel and easily accessible medium rings is of significant interest in the pharmaceutical industry and academic research. However, synthetic access to medium-ring scaffolds is very difficult due to their rigid skeleton and large-angle strains. In this paper, a new class of medium rings bearing bitriazolyls (MRBTs) was designed, synthesized, identified as a promising new skeleton ligand for the Cu(I)-catalyzed click reaction, and used in site-special modification of protein.
View Article and Find Full Text PDFA cryptic gene cluster, bln, was activated by genome mining in Tolypocladium ophioglossoides. This activation led to the production of balanol and eight other metabolites. Gene disruption and metabolite profile analysis showed that the biosynthesis of balanol involved the convergence of independent PKS and NRPS pathways, and a biosynthetic pathway for balanol was proposed.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2017
Salinomycin, a polyether antibiotic produced by Streptomyces albus, is widely used in animal husbandry as an anticoccidial drug and growth promoter. Situated within the salinomycin biosynthetic gene cluster, slnR encodes a LAL-family transcriptional regulator. The role of slnR in salinomycin production in S.
View Article and Find Full Text PDFAromatic azoxy compounds recently attracted wide interest for their unique liquid crystalline properties. However, biosynthetic pathways of natural azoxy products have rarely been reported. Three novel aromatic azoxy compounds, azoxymycins A, B, and C, have been isolated and identified from Streptomyces chattanoogensis L10, and their biosynthetic pathways have been reported.
View Article and Find Full Text PDFUnlabelled: Acyltransferase (AT) domains of polyketide synthases (PKSs) usually use coenzyme A (CoA) as an acyl donor to transfer common acyl units to acyl carrier protein (ACP) domains, initiating incorporation of acyl units into polyketides. Two clinical immunosuppressive agents, FK506 and FK520, are biosynthesized by the same PKSs in several Streptomyces strains. In this study, characterization of AT4FkbB (the AT domain of the fourth module of FK506 PKS) in transacylation reactions showed that AT4FkbB recognizes both an ACP domain (ACPT csA) and CoA as acyl donors for transfer of a unique allylmalonyl (AM) unit to an acyl acceptor ACP domain (ACP4FkbB), resulting in FK506 production.
View Article and Find Full Text PDFGenomic sequencing of actinomycetes has revealed the presence of numerous gene clusters seemingly capable of natural product biosynthesis, yet most clusters are cryptic under laboratory conditions. Bioinformatics analysis of the completely sequenced genome of Streptomyces chattanoogensis L10 (CGMCC 2644) revealed a silent angucycline biosynthetic gene cluster. The overexpression of a pathway-specific activator gene under the constitutive ermE* promoter successfully triggered the expression of the angucycline biosynthetic genes.
View Article and Find Full Text PDFIt is known that bacterial group II phosphopantetheinyl transferases (PPTases) usually phosphopantetheinylate acyl carrier proteins (ACPs) involved in the secondary metabolism. For example, a bacterial group II PPTase SchPPT has been known to phosphopantetheinylate only ACPs involved in secondary metabolism, such as scn ACP0-2 and scn ACP7. In this study, we found two bacterial group II PPTases, Hppt and Sppt, could phosphopantetheinylate not only scn ACP0-2 and scn ACP7, but also sch FAS ACP, an ACP involved in primary metabolism.
View Article and Find Full Text PDFThe known functions of type II thioesterases (TEIIs) in type I polyketide synthases (PKSs) include selecting of starter acyl units, removal of aberrant extender acyl units, releasing of final products, and dehydration of polyketide intermediates. In this study, we characterized two TEIIs (ScnI and PKSIaTEII) from Streptomyces chattanoogensis L10. Deletion of scnI in S.
View Article and Find Full Text PDFPhosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu.
View Article and Find Full Text PDFObjective: To screen and identify a bacterium capable of converting daidzein to S-equol.
Methods: We used antibiotics to limit unrelated bacterial growth and enrich the target bacteria, and isolated the aim bacterial strain from rat intestine. The metabolite of daidzein was tested by HPLC, MS and NMR.