With the rapid development of Industrial Internet of Things (IIoT) technology, various IIoT devices are generating large amounts of industrial sensor data that are spatiotemporally correlated and heterogeneous from multi-source and multi-domain. This poses a challenge to current detection algorithms. Therefore, this paper proposes an improved long short-term memory (LSTM) neural network model based on the genetic algorithm, attention mechanism and edge-cloud collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT facilities.
View Article and Find Full Text PDFTo mitigate the impact of wind power uncertainty and power-communication coupling on the robustness of a new power system, a bi-level mixed-integer robust optimization strategy is proposed. Firstly, a coupled network model is constructed based on complex network theory, taking into account the coupled relationship of energy supply and control dependencies between the power and communication networks. Next, a bi-level mixed-integer robust optimization model is developed to improve power system resilience, incorporating constraints related to the coupling strength, electrical characteristics, and traffic characteristics of the information network.
View Article and Find Full Text PDFIdentifying critical links is of great importance for ensuring the safety of the cyber-physical power system. Traditional electrical betweenness only considers power flow distribution on the link itself, while ignoring the local influence of neighborhood links and the coupled reaction of information flow on energy flow. An identification method based on electrical betweenness centrality and neighborhood similarity is proposed to consider the internal power flow dynamic influence existing in multi-neighborhood nodes and the topological structure interdependence between power nodes and communication nodes.
View Article and Find Full Text PDF