IEEE J Biomed Health Inform
May 2020
Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more transparent interpretation by highlighting the distinct regions recognised by the network. To the best of our knowledge, this is the first work of providing the interpretable diagnosis of glaucoma with the popular deep learning model.
View Article and Find Full Text PDF