Publications by authors named "Yuanqing Gao"

Background: Whether preoperative exposure to glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are associated with postoperative nausea and vomiting (PONV) after laparoscopic sleeve gastrectomy (LSG) remains unclear.

Objectives: To investigate the association between preoperative GLP-1RAs exposure and PONV after LSG.

Setting: University Hospital, China.

View Article and Find Full Text PDF

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear.

View Article and Find Full Text PDF

Orexin is a neuropeptide released from hypothalamus regulating feeding, sleeping, arousal, and cardiovascular activity. Past research has demonstrated that orexin receptor 2 (OX2R) agonist infusion in the brain results in sympathoexcitatory responses. Here, we found that epicardial administration of OX2R agonism leads to opposite responses.

View Article and Find Full Text PDF

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes.

View Article and Find Full Text PDF

Inflammation-driven endothelial dysfunction is the major initiating factor in atherosclerosis, while the underlying mechanism remains elusive. Here, we report that the non-canonical stimulator of interferon genes (STING)-PKR-like ER kinase (PERK) pathway was significantly activated in both human and mice atherosclerotic arteries. Typically, STING activation leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-B)/p65, thereby facilitating signals and inflammation.

View Article and Find Full Text PDF

The hypothalamus plays a crucial role in controlling metabolism and energy balance, with Agouti-related protein (AgRP) neurons and proopiomelanocortin (POMC) neurons being essential components of this process. The proper development of these neurons is important for metabolic regulation in later life. Microglia, the resident immune cells in the brain, have been shown to significantly influence neurodevelopment.

View Article and Find Full Text PDF

The decline in gut microbial diversity in modern humans is closely associated with the rising prevalence of various diseases. It is imperative to investigate the underlying causes of gut microbial loss and restoring methods. Although the impact of non-perinatal antibiotic use on gut microbiota has been recognized, its intergenerational effects remain unexplored.

View Article and Find Full Text PDF

Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation.

View Article and Find Full Text PDF

Background: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF).

Methods: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a rare congenital developmental disorder mainly due to the absent expression of genes on the paternally inherited chromosome 15q11-q13 region. Most of the clinical symptoms of PWS are related to hypothalamic dysfunction, including hyperphagia, morbid obesity, mental retardation, and hypogonadism. However, the molecular genetic mechanism of PWS is not fully understood, especially the relationship between genotype and phenotype.

View Article and Find Full Text PDF

There are about 20 species of Burm. f. worldwide in tropical and subtropical Asia, Africa and neighboring islands, Oceania, and the Americas.

View Article and Find Full Text PDF

Orexin signaling has been associated with energy expenditure and brown adipose tissue (BAT) function. However, conflicting data exist in the field about how orexin signaling regulates BAT thermogenesis. In this study, we show that a specific orexin receptor type 2 (OX2R) agonist [Ala11, D-Leu15]-OxB (OB-Ala) inhibited intrascapular brown adipose tissue (iBAT) thermogenesis by reducing sympathetic output to iBAT.

View Article and Find Full Text PDF

Disturbance of macrophage-associated lipid metabolism plays a key role in atherosclerosis. Crosstalk between autophagy deficiency and inflammation response in foam cells (FCs) through epigenetic regulation is still poorly understood. Here, we demonstrate that in macrophages, oxidized low-density lipoprotein (ox-LDL) leads to abnormal crosstalk between autophagy and inflammation, thereby causing aberrant lipid metabolism mediated through a dysfunctional transcription factor EB (TFEB)-P300-bromodomain-containing protein 4 (BRD4) axis.

View Article and Find Full Text PDF

Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is an important prepathology of, and will ultimately lead to, heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. This study aims to elucidate the effects and mechanisms of HINT1 (histidine triad nucleotide-binding protein 1) in cardiac hypertrophy and heart failure.

View Article and Find Full Text PDF

Microglia play a critical role in maintaining neural function. While microglial activity follows a circadian rhythm, it is not clear how this intrinsic clock relates to their function, especially in stimulated conditions such as in the control of systemic energy homeostasis or memory formation. In this study, we found that microglia-specific knock-down of the core clock gene, Bmal1, resulted in increased microglial phagocytosis in mice subjected to high-fat diet (HFD)-induced metabolic stress and likewise among mice engaged in critical cognitive processes.

View Article and Find Full Text PDF

Objective: The 2019 novel coronavirus disease (COVID-19) is threatening global health and is especially pronounced in patients with chronic metabolic syndromes. Meanwhile, a significant proportion of patients present with digestive symptoms since angiotensin-converting enzyme 2 (ACE2), which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the intestine. The aim of this study was to evaluate the effects of a high-fat diet (HFD) and a maternal HFD on the intestinal ACE2 levels in adults and neonates.

View Article and Find Full Text PDF

Erycibes are members of the Convolvulaceae family, including more than 10 species worldwide that are distributed in tropical Asia. Some Erycibes species have long been used as traditional remedies for rheumatoid arthritis, fever, hepatitis, and liver injury in China and Thailand. A total of 152 compounds from Erycibes plants have been isolated and identified, categorized as flavonoids, coumarins, quinic acid derivatives, lignans, and alkaloids.

View Article and Find Full Text PDF

Microglia are the immune cells of the brain. Hyperactivation of microglia contributes to the pathology of metabolic and neuroinflammatory diseases. Evidence has emerged that links the circadian clock, cellular metabolism, and immune activity in microglia.

View Article and Find Full Text PDF

Due to the increasing prevalence of cancer year by year, and the complexity and refractory nature of the disease itself, it is required to constantly innovate the development of new cancer treatment schemes. At the same time, the understanding of cancers has deepened, from the use of chemotherapy regimens with high toxicity and side effects, to the popularity of targeted drugs with specific targets, to precise treatments based on tumor characteristics rather than traditional anatomical location classification. In precision medicine, in the view of the specific cancer diseases and their biological characteristics, there is a great potential to develop tissue-agnostic targeted therapy with broad-spectrum anticancer significance.

View Article and Find Full Text PDF

Background And Aims: Protein S-sulfhydration mediated by H S has been shown to play important roles in several diseases. However, its precise role in liver disease and the related mechanism remain unclear.

Approach And Results: We showed that in streptozotocin (STZ)-treated and high-fat diet (HFD)-treated low-density lipoprotein receptor-negative (LDLr ) mice, the H S donor GYY4137 ameliorated liver injury, decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, mitigated lipid deposition, and reduced hepatocyte death.

View Article and Find Full Text PDF

Background: S-nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in the pathogenesis of cardiovascular disease. The aim of this study was to determine the role of SNO of MLP (muscle LIM protein) in myocardial hypertrophy, as well as the mechanism by which SNO-MLP modulates hypertrophic growth in response to pressure overload.

Methods: Myocardial samples from patients and animal models exhibiting myocardial hypertrophy were examined for SNO-MLP level using biotin-switch methods.

View Article and Find Full Text PDF

Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity.

View Article and Find Full Text PDF

Objective: Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development.

View Article and Find Full Text PDF

Objective: Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate.

Design: Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate.

View Article and Find Full Text PDF