We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFBronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic.
View Article and Find Full Text PDFUnlabelled: Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region.
View Article and Find Full Text PDFCram's supramolecular capsule Octacid4 can irreversibly and noncovalently self-assemble with small-molecule guests at room temperature, but how they self-assemble and what accelerates their assembly remain poorly understood. This article reports 81 distinct Octacid4•guest self-assembly pathways captured in unrestricted, unbiased molecular dynamics simulations. These pathways reveal that the self-assembly was initiated by the guest interaction with the cavity portal exterior of Octacid4 to increase the portal collisions that led to the portal expansion for guest ingress, and completed by the portal contraction caused by the guest docking inside the cavity to impede guest egress.
View Article and Find Full Text PDFHow BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin.
View Article and Find Full Text PDFTriggering receptor expressed on myeloid cell 2 (TREM2) is linked to risk of neurodegenerative disease. However, the function of TREM2 in neurodegeneration is still not fully understood. Here, we investigated the role of microglial TREM2 in TAR DNA-binding protein 43 (TDP-43)-related neurodegeneration using virus-mediated and transgenic mouse models.
View Article and Find Full Text PDFPharmacological activation of the glycolytic enzyme PKM2 or expression of the constitutively active PKM1 isoform in cancer cells results in decreased lactate production, a phenomenon known as the PKM2 paradox in the Warburg effect. Here we show that oxaloacetate (OAA) is a competitive inhibitor of human lactate dehydrogenase A (LDHA) and that elevated PKM2 activity increases de novo synthesis of OAA through glutaminolysis, thereby inhibiting LDHA in cancer cells. We also show that replacement of human LDHA with rabbit LDHA, which is relatively resistant to OAA inhibition, eliminated the paradoxical correlation between the elevated PKM2 activity and the decreased lactate concentration in cancer cells treated with a PKM2 activator.
View Article and Find Full Text PDFNeurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs.
View Article and Find Full Text PDFMolecular dynamics simulations of hemicarcerands and related variants allow the study of constrictive binding and offer insight into the rules of molecular complexation, but are limited because three-dimensional models of hemicarcerands are tedious to build and their atomic charges are complicated to derive. There have been no molecular dynamics simulations of the reported water-soluble hemicarcerand (Octacid4) that explain how Octacid4 encapsulates guests at 298 K and keeps them encapsulated at 298 K in NMR experiments. Herein we report a modular approach to hemicarcerand simulations that simplifies the model building and charge derivation in a manner reminiscent of the approach to protein simulations with truncated amino acids as building blocks.
View Article and Find Full Text PDFAxonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia.
View Article and Find Full Text PDFMany cellular stresses are transduced into apoptotic signals through modification or up-regulation of the BH3-only subfamily of BCL2 proteins. Through direct or indirect mechanisms, these proteins activate BAK and BAX to permeabilize the mitochondrial outer membrane. While the BH3-only proteins BIM, PUMA, and tBID have been confirmed to directly activate BAK through its canonical BH3 binding groove, whether the BH3-only proteins BMF, HRK or BIK can directly activate BAK is less clear.
View Article and Find Full Text PDFInhibition of Aβ aggregation and neurotoxicity has been developed as an attractive therapeutic strategy to combat Alzheimer's disease (AD). Bis(propyl)-cognitin (B3C) is a multifunctional dimer derived from tacrine. Herein, the anti-aggregation and disassembly effects of B3C on Aβ, together with the neuroprotective effects and underlying mechanisms of B3C against Aβ-induced neurotoxicity were investigated in silico, in vitro and in vivo.
View Article and Find Full Text PDFMutants of a catalytically inactive variant of Proteinase 3 (PR3)-iPR3-Val possessing a Ser195Ala mutation relative to wild-type PR3-Val-offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis with polyangiitis (GPA) and whether such interactions can be interrupted. Here we report that iHm5-Val, a triple mutant of iPR3-Val, bound a monoclonal antibody (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas the corresponding epitope of iPR3-Val was latent to moANCA518. Simulated B-factor analysis revealed that the binding of moANCA518 to iHm5-Val was due to increased main-chain flexibility of the latent epitope caused by remote mutations, suggesting rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions as new GPA treatments.
View Article and Find Full Text PDFCombination therapies may have greater efficacy compared with monotherapy in treating stroke. We investigated the molecular mechanisms by which the combination of bis(propyl)-cognitin, an uncompetitive antagonist of NMDA receptor, and treadmill exercise promote rehabilitation after ischemic stroke. Rats were distributed into 3 treatment groups: infarct/bis(propyl)-cognitin(drug only group, DO); infarct/treadmill exercise(exercise only group, EO); infarct/bis(propyl)-cognitin + treadmill exercise (drug + exercise group, DE).
View Article and Find Full Text PDFUsing personalized peptide vaccines (PPVs) to target tumor-specific nonself-antigens (neoantigens) is a promising approach to cancer treatment. However, the development of PPVs is hindered by the challenge of identifying tumor-specific neoantigens, in part because current in silico methods for identifying such neoantigens have limited effectiveness. In this article, we report the results of molecular dynamics simulations of 12 oligopeptides bound with an HLA, revealing a previously unrecognized association between the inability of an oligopeptide to elicit a T cell response and the contraction of the peptide-binding groove upon binding of the oligopeptide to the HLA.
View Article and Find Full Text PDFA vaccine that could expand melanoma-specific T cells might reduce the risk of recurrence of resected melanoma and could provide an alternative or adjunct to standard immunotherapy options. We tested the safety and immunogenicity of a vaccine coupling a melanoma-associated peptide with a xenogenic peptide (to promote epitope spreading) and/or resiquimod (to activate antigen-presenting cells). HLA-A2-positive patients with resected stage II, III, and IV melanoma were assigned to treatment on one of three schedules.
View Article and Find Full Text PDFIn reported microcanonical molecular dynamics simulations, fast-folding proteins CLN025 and Trp-cage autonomously folded to experimentally determined native conformations. However, the folding times of these proteins derived from the simulations were more than 4-10 times longer than their experimental values. This article reports autonomous folding of CLN025 and Trp-cage in isobaric-isothermal molecular dynamics simulations with agreements within factors of 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2017
Defined as a state function representing an inhibitor's absolute affinity for its target enzyme, the experimentally determined enzyme inhibition constant (K) is widely used to rank order binding affinities of different inhibitors for a common enzyme or different enzymes for a common inhibitor and to benchmark computational approaches to predicting binding affinity. Herein, we report that adsorption of bis(7)-tacrine to the glass container surface increased its K against Electrophorus electricus acetylcholinesterase (eeAChE) to 3.2 ± 0.
View Article and Find Full Text PDFPredicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.
View Article and Find Full Text PDFSpecialized to simulate proteins in molecular dynamics (MD) simulations with explicit solvation, FF12MC is a combination of a new protein simulation protocol employing uniformly reduced atomic masses by tenfold and a revised AMBER forcefield FF99 with (i) shortened CH bonds, (ii) removal of torsions involving a nonperipheral sp(3) atom, and (iii) reduced 1-4 interaction scaling factors of torsions ϕ and ψ. This article reports that in multiple, distinct, independent, unrestricted, unbiased, isobaric-isothermal, and classical MD simulations FF12MC can (i) simulate the experimentally observed flipping between left- and right-handed configurations for C14-C38 of BPTI in solution, (ii) autonomously fold chignolin, CLN025, and Trp-cage with folding times that agree with the experimental values, (iii) simulate subsequent unfolding and refolding of these miniproteins, and (iv) achieve a robust Z score of 1.33 for refining protein models TMR01, TMR04, and TMR07.
View Article and Find Full Text PDFChem Biol Interact
November 2016
Butyrylcholinesterase (BChE) has long been regarded as an "orphan enzyme" with no specific physiological role other than to metabolize exogenous bioactive esters in the diet or in medicines. Human beings with genetic mutations that eliminate all BChE activity appear completely normal, and BChE-knockout mice have been described as "lacking a phenotype" except for faster weight gain on high-fat diets. However, our recent studies with viral gene transfer of BChE in mice reveal that BChE hydrolyzes the so-called "hunger hormone," ghrelin, at a rate which strongly affects the circulating levels of this peptide hormone.
View Article and Find Full Text PDFUnlabelled: Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis.
View Article and Find Full Text PDFAims: Fibrillar aggregates of β-amyloid protein (Aβ) are the main constituent of senile plaques and considered to be one of the causative events in the pathogenesis of Alzheimer's disease (AD). Compounds that could inhibit Aβ fibrils formation, disaggregate preformed Aβ fibrils as well as reduce their associated neurotoxicity might have therapeutic values for treating AD. In this study, the inhibitory effects of bis (heptyl)-cognitin (B7C), a multifunctional dimer derived from tacrine, on aggregation and neurotoxicity of Aβ1-40 were evaluated both in vitro and in vivo.
View Article and Find Full Text PDF