Publications by authors named "Yuanmeng Zhou"

Diabetic foot ulcers (DFUs) are one of the most serious and devastating complication of diabetes, manifesting as foot ulcers and impaired wound healing in patients with diabetes mellitus. To solve this problem, sulfated hyaluronic acid (SHA)/collagen-based nanofibrous biomimetic skins was developed and used to promote the diabetic wound healing and skin remodeling. First, SHA was successfully synthetized using chemical sulfation and incorporated into collagen (COL) matrix for preparing the SHA/COL hybrid nanofiber skins.

View Article and Find Full Text PDF

The current use of synthetic grafts often yields low patency in the reconstruction of small-diameter blood vessels owing to the deposition of thrombi and imperfect coverage of the endothelium on the graft lumen. Therefore, the design of vascular scaffolds with antithrombotic performance and endothelialization is greatly required. Herein, we developed an enzyme-laden scaffold based on hyaluronic acid oligosaccharides-modified collagen nanofibers (labeled HA-COL) to improve the anti-platelet capacity and endothelialization of vascular grafts.

View Article and Find Full Text PDF

Considering the structural complexity of natural bone and the limitations of current treatment options, designing a biomimetic and functional tissue-engineered bone graft has been an urgent need for the replacement and regeneration of defected bone tissue. In light of the cell recruitment to the defect region, scaffold-guided bone tissue engineering has proven to be a viable strategy that is poised to deliver effective osseointegration and vascularization during bone remodeling. Herein, we provide an engineered bone scaffold based on aligned poly(lactic-co-glycolide) (PLGA) nanofibers incorporated with hyaluronic acid oligosaccharide-collagen mineralized microparticles (labeled oHA-Col/HAP) to guide the cell-specific orientation and osseointegration in bone healing.

View Article and Find Full Text PDF