Background: Mpox has spread to many countries around the world. While the existing live attenuated mpox vaccines are effective, advances in 21st century technologies now enable the development of vaccines with more specific antigens, clearer mechanisms, and more controllable side effects.
Methods: We systematically evaluated the immunogenicity and protective efficacy of the A35R, M1R and B6R antigens of the mpox virus (MPXV).
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2.
View Article and Find Full Text PDFGenerating an infectious non-human primate (NHP) model using a prevalent monkeypox virus (MPXV) strain has emerged as a crucial strategy for assessing the efficacy of vaccines and antiviral drugs against human MPXV infection. Here, we established an animal model by infecting cynomolgus macaques with the prevalent MPXV strain, WIBP-MPXV-001, and simulating its natural routes of infection. A comprehensive analysis and evaluation were conducted on three animals, including monitoring clinical symptoms, collecting hematology data, measuring viral loads, evaluating cellular and humoral immune responses, and examining histopathology.
View Article and Find Full Text PDF