Publications by authors named "Yuanjun Nie"

A universal, green, and rapid lignin-based emulsive liquid-liquid microextraction (ELLME) method was established to detect nine triazole fungicides in water, juice, vinegar, and alcoholic beverages via UHPLC-MS/MS. By employing an environmentally friendly emulsifier (lignin), the proposed ELLME was compatible with more extractants, and not restricted to fatty acids. Due to the high amphiphilic properties and three-dimensional structure of lignin, the emulsion was quickly formed through several aspirate-dispense cycles of the green extractant (guaiacol) and lignin solution.

View Article and Find Full Text PDF

A series of carbazole-based vinyl-benzoxazole derivatives have been synthesized in order to verify whether X-ray diffraction (XRD) simulation can give more information about intermolecular stacking in the gel phase. It was found that their gelation capabilities were strongly dependent on the length of the alkyl chain. The compounds with shorter alkyl chains have lower critical gelation concentrations (CGCs) in nonpolar alkane and alcohols with longer carbon chains.

View Article and Find Full Text PDF

In this work, an AIE-active tetraphenylethene-based Schiff base fluorescent probe 3 with a large Stokes shift (247 nm) was designed and synthesized. It was found that the aggregated probe 3 exhibited very high selectivity and anti-interference ability for Cu in PBS buffer (70% f) through a fluorescence "turn-off" strategy. Job's plot and NMR analysis indicated the two phenolic hydroxyl groups of the benzene ring and the N atom (-CH=N-) on probe 3 interacted with Cu ions in a 1:1 stoichiometric ratio.

View Article and Find Full Text PDF

Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community.

View Article and Find Full Text PDF