Publications by authors named "Yuanjiang Zhang"

Impaired phosphatase activity contributes to the persistent activation of STAT3 in tumors. Given that STAT family members with various or even opposite functions are often phosphorylated or dephosphorylated by the same enzymes, the mechanism for STAT3-specific dephosphorylation in cells remains largely unknown. Here, we report that GdX (UBL4A) promotes STAT3 dephosphorylation via mediating the interaction between TC45 (the nuclear isoform of TC-PTP) and STAT3 specifically.

View Article and Find Full Text PDF

GdX (also named Ubl4A) is a house-keeping gene located on the X chromosome and encodes a protein harboring an ubiquitin-like domain in human and mouse. Although identified in 1988, the function of GdX remains unknown. To elucidate the role of GdX in vivo, we generated a conditional GdX knockout mouse in which Exon 2 was flanked by two loxP sites.

View Article and Find Full Text PDF

We investigate the psi(3770) non-DD decays into VP, where V and P denote vector and pseudoscalar mesons, respectively, via Okubo-Zweig-Iizuka-rule-evading intermediate meson rescatterings in an effective Lagrangian theory. By identifying the leading meson loop transitions and constraining the model parameters with the available experimental data for psi(3770)-->J/psieta, phieta, and rhopi, we succeed in making a quantitative prediction for all psi(3770)-->VP with BRVP from 0.41% to 0.

View Article and Find Full Text PDF

Transcription factor Wilms' tumor 1 (WT1) was originally identified as a tumor suppressor for Wilms' tumor, but it is also overexpressed in a variety of cancer cells, suggesting a potential oncogenic function of WT1. It is important to understand molecular mechanisms underlying these dual functions of WT1 in tumorigenesis. In the current study, we report a synergistic role for signal transducers and activators of transcription 3 (STAT3) and WT1 in tumor development, including Wilms' tumor.

View Article and Find Full Text PDF

The severe acute respiratory syndrome (SARS) has been one of the most epidemic diseases threatening human health all over the world. Based on clinical studies, SARS-CoV (the SARS-associated coronavirus), a novel coronavirus, is reported as the pathogen responsible for the disease. To date, no effective and specific therapeutic method can be used to treat patients suffering from SARS-CoV infection.

View Article and Find Full Text PDF