Autophagy plays a critical role in tumor pathogenesis. However, autophagy-related signature in Hepatocellular carcinoma (HCC) has not been revealed yet. We quantified the levels of various cancer hallmarks and identified ATG101 as the major risk factor for overall survival in HCC.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
July 2023
Background: mRNA vaccines are emerging as new targets for cancer immunotherapy. However, the potential tumor antigens for mRNA vaccine design in hepatocellular carcinoma (HCC) remain to be elucidated.
Methods: Genetic and RNA-Seq data were obtained from TCGA and ICGC.
Signaling via the Akt serine/threonine protein kinase plays critical roles in the self-renewal of embryonic stem cells and their malignant counterpart, embryonal carcinoma cells (ECCs). Here we show that in ECCs, Akt phosphorylated the master pluripotency factor Oct4 at threonine 235, and that the levels of phosphorylated Oct4 in ECCs correlated with resistance to apoptosis and tumorigenic potential. Phosphorylation of Oct4 increased its stability and facilitated its nuclear localization and its interaction with Sox2, which promoted the transcription of the core stemness genes POU5F1 and NANOG.
View Article and Find Full Text PDFFlap endonuclease 1 (FEN1), a member of the Rad2 nuclease family, possesses 5' flap endonuclease (FEN), 5' exonuclease (EXO), and gap-endonuclease (GEN) activities. The multiple, structure-specific nuclease activities of FEN1 allow it to process different intermediate DNA structures during DNA replication and repair. We previously identified a group of FEN1 mutations and single nucleotide polymorphisms that impair FEN1's EXO and GEN activities in human cancer patients.
View Article and Find Full Text PDFBackground: It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells.
View Article and Find Full Text PDF