Publications by authors named "Yuanheng Ning"

Activation of both the DNA damage response (DDR) and transforming growth factor β (TGF-β) signaling induces growth arrest of most cell types. However, it is unclear whether the DDR activates TGF-β signaling that in turn contributes to cell growth arrest. Here, we show that in response to DNA damage, ataxia telangiectasia mutated (ATM) stabilizes the TGF-β type II receptor (TβRII) and thus enhancement of TGF-β signaling.

View Article and Find Full Text PDF

Autophagy is a regulated process that sequesters and transports cytoplasmic materials such as protein aggregates via autophagosomes to lysosomes for degradation. Dapper1 (Dpr1), an interacting protein of Dishevelled (Dvl), antagonizes Wnt signaling by promoting Dishevelled degradation via lysosomes. However, the mechanism is unclear.

View Article and Find Full Text PDF

Autophagy is an intracellular degradation process to clear up aggregated proteins or aged and damaged organelles. The Beclin1-Vps34-Atg14L complex is essential for autophagosome formation. However, how the complex formation is regulated is unclear.

View Article and Find Full Text PDF

Transforming growth factor β (TGF-β) plays a critical role in tissue fibrosis. The duration and intensity of TGF-β signaling are tightly regulated. Here we report that TSC-22 (TGF-β-stimulated clone 22) facilitates TGF-β signaling by antagonizing Smad7 activity to increase receptor stability.

View Article and Find Full Text PDF

Wnt signaling plays a key role in embryogenesis and cancer development. Dvl (Dishevelled) is a central mediator for both the canonical and noncanonical Wnt pathways. Dact1 (Dapper1, Dpr1), a Dvl interactor, has been shown to negatively modulate Wnt signaling by promoting lysosomal degradation of Dvl.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) and related growth factors are essential regulators of embryogenesis and tissue homeostasis. The signaling pathways mediated by their receptors and Smad proteins are precisely modulated by various means. Xenopus BAMBI (bone morphogenic protein (BMP) and activin membrane-bound inhibitor) has been shown to function as a general negative regulator of TGF-beta/BMP/activin signaling.

View Article and Find Full Text PDF

Wnt signaling, via the activation of the canonical beta-catenin and lymphoid enhancer factor (LEF)/T-cell factor pathway, plays an important role in embryogenesis and cancer development by regulating the expression of genes involved in cell proliferation, differentiation, and survival. Dapper (Dpr), as a Dishevelled interactor, has been suggested to modulate Wnt signaling by promoting Dishevelled degradation. Here, we provide evidence that Dpr1 shuttles between the cytoplasm and the nucleus.

View Article and Find Full Text PDF

The canonical Wnt/beta-catenin pathway plays a pivotal role in regulating embryogenesis and tumorigenesis by promoting cell proliferation. BAMBI (BMP and activin membrane-bound inhibitor) has previously been shown to negatively regulate the signaling activity of transforming growth factor-beta, activin, and BMP and was identified as a target of beta-catenin in colorectal and hepatocellular tumor cells. In this study, we provide evidence that BAMBI can promote the transcriptional activity of Wnt/beta-catenin signaling.

View Article and Find Full Text PDF

Smad7 plays an essential role in the negative-feedback regulation of transforming growth factor beta (TGF-beta) signaling by inhibiting TGF-beta signaling at the receptor level. It can interfere with binding to type I receptors and thus activation of receptor-regulated Smads or recruit the E3 ubiquitin ligase Smurf to receptors and thus target them for degradation. Here, we report that Smad7 is predominantly localized in the nucleus of Hep3B cells.

View Article and Find Full Text PDF

Wnt signaling plays pivotal roles in the regulation of embryogenesis and cancer development. Xenopus Dapper (Dpr) was identified as an interacting protein for Dishevelled (Dvl), a Wnt signaling mediator, and modulates Wnt signaling. However, it is largely unclear how Dpr regulates Wnt signaling.

View Article and Find Full Text PDF

Genetic studies in mouse and zebrafish have established the importance of activin receptor-like kinase 1 (ALK1) in formation and remodeling of blood vessels. Single-allele mutations in the ALK1 gene have been linked to the human type 2 hereditary hemorrhagic telangiectasia (HHT2). However, how these ALK1 mutations contribute to this disorder remains unclear.

View Article and Find Full Text PDF

Nodal proteins, members of the transforming growth factor-beta (TGFbeta) superfamily, have been identified as key endogenous mesoderm inducers in vertebrates. Precise control of Nodal signaling is essential for normal development of embryos. Here, we report that zebrafish dapper2 (dpr2) is expressed in mesoderm precursors during early embryogenesis and is positively regulated by Nodal signals.

View Article and Find Full Text PDF