Background: Personalized prediction of the risk of symptomatic intracerebral hemorrhage (sICH) after stroke thrombolysis is clinically useful. Machine-learning-based modeling may provide the personalized prediction of the risk of sICH after stroke thrombolysis.
Methods: We identified 2578 thrombolysis-treated ischemic stroke patients between January 2013 and December 2016 from a multicenter database, where 70% were used to train models and the remaining 30% were used as the nominal test sets.