Graphene is a potential candidate for achieving high-performance and multifunctional polypropylene (PP) composites. However, the complex manufacturing process and low dispersibility of graphene, as well as poor interfacial adhesion between graphene and polypropylene chains, stifle progress on large-scale production and applications of graphene/polypropylene composites. Here, we develop a strategy of maleic anhydride grafted polypropylene (MAPP) latex-assisted graphene exfoliation and melt blending to address the key challenges facing in industrial production.
View Article and Find Full Text PDFElectromagnetic wave absorbers constructed by reduced graphene oxide (rGO) and magnetic nanoparticles are extremely desirable for enhancing electromagnetic wave absorption performance due to the effective integration of the properties of dielectric and magnetic materials. However, the arrangement of graphene sheets and the growth of magnetic nanoparticles have always been challenging. Herein, an in-situ growth process has been used to successfully prepare accordion-like graphene with homogeneously distributed Fe nanoparticles in the confined structure via ion absorption and pyrolysis.
View Article and Find Full Text PDFHygroresponsive actuators harness minor fluctuations in the ambient humidity to realize energy harvesting and conversion, thus they are of profound significance in the development of more energy-saving and sustainable systems. However, most of the existing hygroresponsive actuators are only adaptive to wet environments with limited moving directions and shape morphing modes. Therefore, it is highly imperative to develop a hygroresponsive actuator that works in both wet and dry environments.
View Article and Find Full Text PDFBuckled hollow carbon nanospheres (BHCSs) integrate several attractive properties desired for a variety of potential applications. However, the development of a feasible and simple method for preparing BHCS nanoparticles remains a great challenge. Herein, we present a facile strategy for fabricating monodisperse BHCSs via the compression of intact hollow carbon nanospheres (HCSs) with improved mechanical strength.
View Article and Find Full Text PDFCarbonaceous nanotubes (CTs) represent one of the most popular and effective carbon electrode materials for supercapacitors, but the electrochemistry performance of CTs is largely limited by their relatively low specific surface area, insufficient usage of intratube cavity, low content of heteroatom, and poor porosity. An emerging strategy for circumventing these issues is to design novel porous CT-based nanostructures. Herein, a spheres-in-tube nanostructure with hierarchical porosity is successfully engineered, by encapsulating heteroatom-doping hollow carbon spheres into one carbonaceous nanotube (HCSs@CT).
View Article and Find Full Text PDFChem Commun (Camb)
March 2018
An actuator driven by moisture gradients has been developed from a homogeneous graphene oxide film, relying on the in situ formation of a bilayer structure induced by water adsorption. This actuator shows efficient and controllable bending motions, coupled with the capability of lifting objects 8 times heavier than itself.
View Article and Find Full Text PDF