Polyethylene terephthalate (PET) is the most widely consumed polyester plastic and can be recycled by many chemical processes, of which glycolysis is most cost-effective and commercially viable. However, PET glycolysis produces oligomers due to incomplete depolymerization, which are undesirable by-products and require proper disposal. In this study, the PET oligomers from chemical recycling processes were completely bio-depolymerized into monomers and then used for the biosynthesis of biodegradable plastics polyhydroxyalkanoates (PHA) by co-cultivation of two engineered microorganisms Escherichia coli BL21 (DE3)-LCC and Pseudomonas putida KT2440-ΔRDt-ΔZP46C-M.
View Article and Find Full Text PDFSelective laser melting (SLM) is a promising additive manufacturing (AM) process for high-strength or high-manufacturing-cost metals such as Ti-6Al-4V widely applied in aeronautical industry components with high material waste or complex geometry. However, one of the main challenges of AM parts is the variability in fatigue properties. In this study, standard cyclic fatigue and monotonic tensile testing specimens were fabricated by SLM and subsequently heat treated using the standard heat treatment (HT) or hot isostatic pressing (HIP) methods.
View Article and Find Full Text PDF