Publications by authors named "Yuanda Hua"

Redox-neutral carbon-carbon (C-C) bond activation and functionalization strategies of cyclopropanols that give metallo homoenolate have offered merits to construct a range of useful -functionalized ketones in an inverse-polarity fashion. Discovery and identification of oxidative C-C activation reactions of cyclopropanols that generate metallo enolate-homoenolate would provide an opportunity to afford ,-difunctionalized ketones. We report catalytic, net oxidative C-C activation, and silylation of cyclopropanols with traceless acetal directing groups under consecutive Ir and Rh catalysis in regio-, stereo-, and chemo-selective fashion.

View Article and Find Full Text PDF

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC values as low as 130 nM.

View Article and Find Full Text PDF

The Pd-catalyzed asymmetric [4+2] cycloaddition reaction of an aliphatic 1,4-dipole with singly activated electron-deficient alkenes is realized for the first time, enabled by using a newly developed benzylic substituted P,N-ligand, affording tetrahydropyrans having three continuous chiral centers in high yields with high diastereo- and enantioselectivities. The rational transition states of the reaction as well as the role of the benzylic chiral center are proposed.

View Article and Find Full Text PDF

Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC values as low as 620 nM were discovered.

View Article and Find Full Text PDF

Because of the importance of hydrogen atom transfer (HAT) in biology and chemistry, there is increased interest in new strategies to perform HAT in a sustainable manner. Here, we describe a sustainable, net redox-neutral HAT process involving hydrosilanes and alkali metal Lewis base catalysts - eliminating the use of transition metal catalysts - and report an associated mechanism concerning Lewis base-catalysed, complexation-induced HAT (LBCI-HAT). The catalytic LBCI-HAT is capable of accessing both branch-specific hydrosilylation and polymerization of vinylarenes in a highly selective fashion, depending on the Lewis base catalyst used.

View Article and Find Full Text PDF

We report a redox-neutral, catalytic C-C activation of cyclopropyl acetates to produce silicon-containing five-membered heterocycles in a highly region-and chemoselective fashion. The umpolung -selective silylation leading to dioxasilolanes is opposed to contemporary -selective C-C functionalization protocols of cyclopropanols. Lewis base activation of dioxasilolanes as -silyl carbinol equivalents undergoes the unconventional [1,2]-Brook rearrangement to form tertiary alcohols.

View Article and Find Full Text PDF

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC as low as 120 nM.

View Article and Find Full Text PDF

A new, highly selective, bond functionalization strategy, achieved via relay of two transition metal catalysts and the use of traceless acetal directing groups, has been employed to provide facile formation of C-Si bonds and concomitant functionalization of a silicon group in a single vessel. Specifically, this approach involves the relay of Ir-catalyzed hydrosilylation of inexpensive and readily available phenyl acetates, exploiting disubstituted silyl synthons to afford silyl acetals and Rh-catalyzed ortho-C-H silylation to provide dioxasilines. A subsequent nucleophilic addition to silicon removes the acetal directing groups and directly provides unmasked phenol products and, thus, useful functional groups at silicon achieved in a single vessel.

View Article and Find Full Text PDF

A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates.

View Article and Find Full Text PDF

We report a modular approach to catalytic reductive Csp2-H and Csp3-H silylation of carboxylic acid derivatives encompassing esters, ketones, and aldehydes. Choice of either an Ir(I)/Rh(I) or Rh(I)/Rh(I) sequence leads to either exhaustive reductive ester or reductive ketone/aldehyde silylation, respectively. Notably, a catalyst-controlled direct formation of doubly reduced silyl ethers is presented, specifically via Ir-catalyzed exhaustive hydrosilylation.

View Article and Find Full Text PDF

This work describes the design and application of a single-pot, reductive arene C-H silanolization of aromatic esters for synthesis of ortho-formyl arylsilanols. This strategy involves a sequence of two transition metal (Ir and Rh)-catalyzed reactions for reductive arene ortho-silylation directed by hydridosilyl acetals and hydrolysis.

View Article and Find Full Text PDF

Ligand-controlled, norbornene-mediated, regio- and diastereoselective rhodium-catalyzed intramolecular alkene hydrosilylation of homoallyl silyl ethers (1) exploiting either BINAP or 1,6-bis(diphenylphosphino)hexane (dpph) has been developed. This method permits selective access to either trans-oxasilacyclopentanes (trans-2) or oxasilacyclohexanes (3) at will. A substoichiometric amount of norbornene markedly increased both yield and selectivity.

View Article and Find Full Text PDF