Publications by authors named "Yuancheng Teng"

Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, a superdurable full-life superhydrophobic composite block is designed and fabricated by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for the composite block, which features a high compressive strength of up to ≈7.

View Article and Find Full Text PDF

Rhabdophane is an important permeable reactive barrier to enrich radionuclides from groundwater and has been envisaged to host radionuclides in the backend of the nuclear fuel cycle. However, understanding of how An and Sr precipitate into rhabdophane by wet chemistry has not been resolved. In this work, Th and Sr incorporation in the rhabdophane/monazite structure as LaSrThPO·HO solid solutions is successfully achieved in the acid solution at 90 °C.

View Article and Find Full Text PDF

Systematic regulation of hydrophilic regions plays a key role in optimizing the heterogeneous hydrophilic-hydrophobic surface for promoting condensate transfer ability (CTA) under subcooling or high-humidity conditions. In this work, we develop an operable method to fabricate wettability-controllable coatings by regulating the mass ratio of superamphiphobic and superamphiphilic powder (MRP). By investigating the synergic relationship between CTA and MRP, we display an interesting competition between condensation and detachment of condensates.

View Article and Find Full Text PDF

Joule-heat-driven directional transport of liquid droplets has comprehensive engineering applications in various water and thermal management, cooling systems, and self-cleaning. Generally, the driving force for the transport of liquid droplets was always observed at an extremely high Leidenfrost temperature, which limits the potential application between liquid boiling and Leidenfrost points. In this work, we design a new strategy to directionally drive the transport of droplets by blockading the vapor cushion at a temperature much lower than the Leidenfrost point.

View Article and Find Full Text PDF