Publications by authors named "Yuancheng Peng"

Platinum nanoparticles (PtNPs) are classical peroxidase-like nanozyme; self-agglomeration of nanoparticles leads to the undesirable reduction in stability and catalytic activity. Herein, a hybrid peroxidase-like nanocatalyst consisting of PtNPs in situ growing on g-CN nanosheets with enhanced peroxidase-mimic catalytic activity (PtNP@g-CN nanosheets) was prepared for HO and oxidase-based colorimetric assay. g-CN nanosheets can be used as carriers to solve the problem of poor stability of PtNPs.

View Article and Find Full Text PDF

Nucleocapsid protein (N protein) is an appropriate target for early determination of viral antigen-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have found that β-cyclodextrin polymer (β-CDP) has shown a significant fluorescence enhancement effect for fluorophore pyrene via host-guest interaction. Herein, we developed a sensitive and selective N protein-sensing method that combined the host-guest interaction fluorescence enhancement strategy with high recognition of aptamer.

View Article and Find Full Text PDF

Lateral root (LR) initiation is controlled by the pericycle and the neighboring endodermis in Arabidopsis. Here, we demonstrate that UBIQUITIN-SPECIFIC PROTEASE14/DA3 regulates LR initiation by modulating auxin signaling in the pericycle and endodermis. DA3 negatively affects the mRNA and protein levels of AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 in the pericycle and endodermis but positively regulates the protein stability of SHORT HYPOCOTYL 2 (SHY2/IAA3), an auxin signaling repressor, in the endodermis.

View Article and Find Full Text PDF

Ubiquitin-Specific Protease16 (UBP16) has been described involved in cadmium stress and salt stress in Arabidopsis, however nothing is known about the functions of its homologs in maize. In this study, we investigate the functions of ZmUBP15, ZmUBP16 and ZmUBP19, three Arabidopsis UBP16 homologs in maize. Our results indicate that ZmUBP15, ZmUBP16 and ZmUBP19 are ubiquitously expressed throughout plant development, and ZmUBP15, ZmUBP16 and ZmUBP19 proteins are mainly localized in plasma membrane.

View Article and Find Full Text PDF

Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown.

View Article and Find Full Text PDF

How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis.

View Article and Find Full Text PDF

The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species.

View Article and Find Full Text PDF

Organ growth involves the coordination of cell proliferation and cell growth with differentiation. Endoreduplication is correlated with the onset of cell differentiation and with cell and organ size, but little is known about the molecular mechanisms linking cell and organ growth with endoreduplication. We have previously demonstrated that the ubiquitin receptor DA1 influences organ growth by restricting cell proliferation.

View Article and Find Full Text PDF

Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells.

View Article and Find Full Text PDF

The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division.

View Article and Find Full Text PDF