Publications by authors named "Yuanchao Xie"

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks as the third most prevalent global malignancy, marked by significant metastasis and post-surgical recurrence, posing formidable challenges to treatment efficacy. The integration of oligonucleotides with chemotherapeutic drugs emerges as a promising strategy for synergistic CRC therapy. The nanoformulation, lipid nanoparticle (LNP), presents the capability to achieve co-delivery of oligonucleotides and chemotherapeutic drugs for cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a recombinant SFTSV with a nanoluciferase gene to test antiviral efficacy in both lab and animal models, identifying the nucleoside analog 4-FlU as an effective inhibitor of the virus.
  • * The study's findings suggest that 4-FlU is a promising candidate for future SFTSV treatments and could help develop antiviral strategies for other similar viruses.
View Article and Find Full Text PDF

During the ongoing pandemic, providing treatment consisting of effective, low-cost oral antiviral drugs at an early stage of SARS-CoV-2 infection has been a priority for controlling COVID-19. Although Paxlovid and molnupiravir have received emergency approval from the FDA, some side effect concerns have emerged, and the possible oral agents are still limited, resulting in optimized drug development becoming an urgent requirement. An oral remdesivir derivative, VV116, has been reported to have promising antiviral effects against SARS-CoV-2 and positive therapeutic outcomes in clinical trials.

View Article and Find Full Text PDF

β-D-N-Hydroxycytidine (NHC) derivatives with structural modifications at the C', O' or C position and 4'-fluorouridine prodrugs were synthesized and evaluated for their antiviral activities against respiratory syncytial virus (RSV) or influenza virus (IFV) . The NHC derivatives were found inactive, but 4'-fluorouridine and its prodrugs had potent anti-RSV and anti-IFV activities. 4'-Fluorouridine was proved to be a nucleoside with poor stability, but the tri-ester prodrugs exhibited enhanced stability, especially tri-isobutyrate ester 1a.

View Article and Find Full Text PDF

A three-step sequence for preparing remdesivir, an important anti-SARS-CoV-2 drug, is described. Employing ,-dimethylformamide dimethyl acetal (DMF-DMA) as a protecting agent, this synthesis started from (2,3,4,5)-2-(4-aminopyrrolo[2,1-][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydro-furan-2-carbonitrile (GS-441524) and consisted of three reactions, including protection, phosphoramidation, and deprotection. The advantages of this approach are as follows: (1) the protecting group could be removed under a mild deprotection condition, which avoided the generation of the degraded impurity; (2) high stereoselectivity was achieved in the phosphorylated reaction; (3) this synthesis could be performed successively without purification of intermediates.

View Article and Find Full Text PDF

The COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to spread around the world. GS-441524 is the parent nucleoside of remdesivir which is the first drug approved for the treatment of COVID-19, and demonstrates strong activity against SARS-Cov-2 in vitro and in vivo. Herein, we reported the synthesis of a series of deuterated GS-441524 analogs, which had deuterium atoms up to five at the ribose and the nucleobase moieties.

View Article and Find Full Text PDF

VV116 (JT001) is an oral drug candidate of nucleoside analog against SARS-CoV-2. The purpose of the three phase I studies was to evaluate the safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of VV116 in healthy subjects, as well as the effect of food on the pharmacokinetics and safety of VV116. Three studies were launched sequentially: Study 1 (single ascending-dose study, SAD), Study 2 (multiple ascending-dose study, MAD), and Study 3 (food-effect study, FE).

View Article and Find Full Text PDF

A series of 2'-deoxy carbocyclic nucleosides characterized by various 6'-substitutions were synthesized and evaluated for their antiviral activities against three viruses, including hepatitis B virus (HBV), hepatitis C virus, and influenza virus. The in vitro antiviral assays indicated that these nucleosides only showed inhibitory activities against HBV, and the substituted groups at the 6' position significantly affected the activity. Among them, the guanosine analog 2b bearing a 6'-α-hydroxyl methyl group was the most potent compound with an EC value of 80 nM.

View Article and Find Full Text PDF

The nucleoside metabolite of remdesivir, GS-441524 displays potent anti-SARS-CoV-2 efficacy, and is being evaluated in clinical as an oral antiviral therapeutic for COVID-19. However, this nucleoside has a poor oral bioavailability in non-human primates, which may affect its therapeutic efficacy. Herein, we reported a variety of GS-441524 analogs with modifications on the base or the sugar moiety, as well as some prodrug forms, including five isobutyryl esters, two l-valine esters, and one carbamate.

View Article and Find Full Text PDF

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is widespread in the world. In recent years, the increased virulence of the virus due to viral variations, has caused great economic losses to the pig industry in many countries. It is always worthy to find effective therapeutic methods for PED.

View Article and Find Full Text PDF

Currently, remdesivir is the first and only FDA-approved antiviral drug for COVID-19 treatment. Adequate supplies of remdesivir are highly warranted to cope with this global public health crisis. Herein, we report a Weinreb amide approach for preparing the key intermediate of remdesivir in the glycosylation step where overaddition side reactions are eliminated.

View Article and Find Full Text PDF

Remdesivir is a prodrug of the nucleotide analogue and used for COVID-19 treatment. However, the bioanalysis of the active metabolites remdesivir nucleotide triphosphate (RTP) and its precursor remdesivir nucleotide monophosphate (RMP) is very challenging. Herein, we established a novel method to separate RTP and RMP on a BioBasic AX column and quantified them by high-performance liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode.

View Article and Find Full Text PDF

Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study.

View Article and Find Full Text PDF
Article Synopsis
  • Schizophrenia and similar neuropsychiatric diseases need drugs that can target multiple GPCRs to effectively manage symptoms.
  • Researchers developed an automated system using a deep neural network that designs drugs capable of acting on several targets simultaneously, resulting in new compounds with desired effects.
  • One of the synthesized compounds, known as compound 3, showed strong activity against key receptors and led to an even more promising candidate, compound 8, which displayed effective antipsychotic properties in animal tests with minimal side effects.
View Article and Find Full Text PDF

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.

View Article and Find Full Text PDF

A novel synthetic route for making (-)-CBD and its derivatives bearing various C4'-side chains is developed by a late-stage diversification method. Starting from commercially available phloroglucinol, the key intermediate (-)-CBD-2OPiv-OTf is efficiently and regioselectively prepared and further undergoes Negishi cross-coupling to furnish (-)-CBD. This approach allowed an efficient synthesis of (-)-CBD in a five-step total 52% yield on a 10 g scale.

View Article and Find Full Text PDF

A series of benzamide derivatives possessing potent dopamine D , serotonin 5-HT , and 5-HT receptor properties were synthesized and evaluated as potential antipsychotics. Among them, 5-(4-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)butoxy)-N-cyclopropyl-2-fluorobenzamide (4k) held the best pharmacological profile. It not only exhibited potent and balanced activities for the D , 5-HT , and 5-HT receptors, but was also endowed with low to moderate activities for the 5-HT , H , and M receptors, suggesting a low propensity for inducing weight gain or diabetes.

View Article and Find Full Text PDF

To explore the application potential of dual prodrug strategies in the development of anti-HCV agents, a variety of sofosbuvir derivatives with modifications at the C4 or N3 position of the uracil moiety were designed and synthesized. Some compounds exhibited potent anti-HCV activities, such as 4e and 8a-8c with similar EC values (0.20-0.

View Article and Find Full Text PDF

In the present study, a series of tetrahydropyridopyrimidinone derivatives, possessing potent dopamine D, serotonin 5-HT and 5-HT receptors properties, was synthesized and evaluated as potential antipsychotics. Among them, 3-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one (10d) held the best pharmacological profile. It not only exhibited potent and balanced activities for D, 5-HT, and 5-HT receptors, but was also endowed with low activities for α, 5-HT, H receptors and hERG channels, suggesting a low propensity for inducing orthostatic hypotension, weight gain and QT prolongation.

View Article and Find Full Text PDF

In the present study, a series of benzamides, endowed with potent dopamine D2, serotonin 5-HT1A and 5-HT2A receptors properties, was synthesized and evaluated as potential antipsychotics. Among them, 3-(4-(4-(6-fluorobenzo[d]isoxazol-3-yl)-piperidin-1-yl)butoxy)-N-methylbenzamide (21) and its fluoro-substituted analogue (22) held the best pharmacological binding profiles. They not only presented potent activities for D2, 5-HT1A, and 5-HT2A receptors, but were also endowed with low activities for 5-HT2C, H1 receptors and hERG channels, suggesting a low propensity of inducing weight gain and QT prolongation.

View Article and Find Full Text PDF

Nowadays, a large number of people in the world are suffering from chronic Hepatitis C. HCV NS5B polymerase conserved across the identified 7 HCV genotypes is considered to be the most promising target in combating HCV. During the past decade, significant progress has been made in the discovery of novel nucleoside HCV NS5B polymerase inhibitors.

View Article and Find Full Text PDF

To discover group-1-specific neuraminidase (NA) inhibitors that are especially involved in combating the H5N1 virus, two series of oseltamivir derivatives were designed and synthesized by targeting the 150-cavity. Among these, compound 20l was the most potent N1-selective inhibitor, with IC50 values of 0.0019, 0.

View Article and Find Full Text PDF